
   

 

 

 

 

 

Robot Final Report 

Engineering 1282.01H 

Spring 2020 

  

  

  

  

 

 

Thomas Krisak 

Keith Kriston 

Alekzander Srode 

Kevin Wang 

  

T. Erb     MWF 10:20 

  

Date of Experiment: 02/04/2020 

Date of Submission: 04/20/2020 

 

Unknown




 

 

Team H1 - Executive Summary 

Carmen’s Diner faces increased demand from implementation of an online ordering app. 

To meet this demand increase, the diner looks to utilize automated vehicles to solve simpler 

tasks, allowing staff to focus on more complicated work. Multiple teams were tasked with 

designing such vehicles, each creating a robot which could quickly, precisely, and consistently 

perform tasks about a premade diner course [2]. These tasks included pressing a jukebox button 

based on light color, dropping off trays, flipping a certain lever up and down on the ice cream 

machine, flipping a burger patty, sliding a ticket on its rack, and pressing the final red button [1]. 

Team H1 initially intended to use a triangular chassis with a three-wheel omnidirectional 

drivetrain. For task completion, the team would employ a forklift-shaped arm which could rotate 

and move up and down. After some development, however, the team ended up changing the 

design to a laser-cut wooden rectangular chassis driven by two powered wheels and two sliders. 

The task completion mechanisms developed along with the performance tests of the robot, 

finalized as a front and back arm. Additionally, both a light sensing mechanism and a line 

following set up supported the arms and drivetrain in completing tasks and movement. 

The wheels, motors, and motor mounts were already available, but the chassis and sliders 

were specially designed by and manufactured for the team. The drivetrain and chassis were 

mated using screws and 3D printed parts. For navigation, the robot used its drivetrain to follow a 

pre-coded path determined and heavily tweaked by the team in testing. Early on, the wheels 

often detached from the motors, an issue fixed by securing the wheels to the motor axle with 

glue. While this prevented them from falling off, one wheel was glued at an angle that hindered 

proper movement. Additionally, the chassis’ holes were slightly too small for screw heads, a 

problem fixed by sanding. 



 

 

Three optosensors were also attached to the chassis, allowing the robot to determine if it 

was over any lines about the diner course. An algorithm was developed which utilized these 

sensors to keep the robot moving along the line. Despite brief testing, neither the optosensors nor 

RPS was not utilized. Given more time, the team would have included these systems. 

Furthermore, a CDS cell was attached to the bottom of the robot, enabling it to detect the 

brightness of any light below it. A piece of cardboard surrounded the cell, minimalizing the 

amount of ambient light that reached it. Meanwhile, a red filter covered the bottom of this 

cylinder to increase the contrast between red and blue light. This cover allowed the robot to more 

accurately detect the color of light beneath it. The robot was able to sense red light but struggled 

to accurately detect blue. Thus, the robot defaulted to blue unless red light was detected.   

The first arm saw a cardboard tray attached to an axle, in turn connected to a servo motor. 

Additionally, an erector set piece was attached to the same axle, acting as a longer front arm. It 

had enough clearance to turn roughly 90 degrees, started resting at an angle level to the floor. 

Tasked with depositing the tray, flipping the grill, and pulling the ice cream lever, initially this 

arm reliably met its requirements. Despite early success, however, the axle which powered this 

arm broke off the servo motor which drove it. The arm failed to complete tasks after this despite 

attempts to repair it. A better joint between the axle and motor would be needed for future tests. 

Another servo, modified to act as a DC motor, was paired with a gear and toothed erector 

set piece, enabling the piece to extend and retract. This arm was tasked with moving the ticket 

but proved problematic during testing. Both movement and arm extension required precise code 

tweaking only accomplished through testing, and the arm also had to be repaired when it became 

misaligned during said testing. Eventually, it was able to accomplish its task.



   

 

 

 

Table of Contents 
Team H1 - Executive Summary ..................................................................................................................... ii 

1. Introduction .............................................................................................................................................. 1 

2. Preliminary Concepts ................................................................................................................................ 2 

     2.1 Brainstorming Process ........................................................................................................................ 2 

     2.2 Robot Tasks, Conditions, and Rules .................................................................................................... 5 

     2.3 Team’s Task Completion Decisions .................................................................................................... 8 

3. Analysis, Testing, and Refinements ........................................................................................................ 10 

     3.1 Analysis of the Drivetrain ................................................................................................................. 10 

     3.2 Analysis of the Chassis and Mechanisms ......................................................................................... 15 

     3.3 Testing and Refinement ................................................................................................................... 15 

4. Prototype Status ..................................................................................................................................... 18 

     4.1 Budget and Time Spent .................................................................................................................... 18 

     4.2 Chassis and Drivetrain ...................................................................................................................... 19 

          4.2.1 Chassis ....................................................................................................................................... 20 

          4.2.2 Drivetrain .................................................................................................................................. 21 

     4.3 Task Completion Mechanisms .......................................................................................................... 22 

     4.4 Code .................................................................................................................................................. 26 

5. Future Development ............................................................................................................................... 27 

     5.1 Code Development ........................................................................................................................... 27 

     5.2 Hardware Development ................................................................................................................... 29 

6. Summary and Conclusions ...................................................................................................................... 31 

7. References .............................................................................................................................................. 34 

APPENDIX A ................................................................................................................................................... 1 

APPENDIX B ................................................................................................................................................... 1 

APPENDIX C ................................................................................................................................................... 1 

APPENDIX D ................................................................................................................................................... 1 

APPENDIX E ................................................................................................................................................... 1 

 

  



 

 

List of Figures 

Figure 1: Side View of Robot Mockup Model................................................................................3 

Figure 2: Course Layout with Task Locations................................................................................6 

Figure 3: Decided Path of Robot for Competitions.........................................................................9 

Figure 4: Graph of Motor Torques and Rotational Speeds............................................................14 

Figure 5: Pie Chart for Categorical Breakdown of Budget Spent.................................................18 

Figure 6: Robot CDS Cell Picture.................................................................................................22 

Figure 7: Robot Front Arm Picture................................................................................................23 

Figure 8: Robot Back Arm Picture................................................................................................24 

Figure 9: Front View of Robot Prototype......................................................................................26 

............................................................................................................................................................ 

Figure A1: Final Code Flowchart...............................................................................................A16 

Figure A2: Continuation of Final Code Flowchart.....................................................................A17 

............................................................................................................................................................ 

Figure C1: Three Initial Design Concepts.....................................................................................C2 

Figure C2: Front View of Robot Mockup Model.........................................................................C3 

Figure C3: Side View of Full Robot.............................................................................................C3 

Figure C4: Electrical Diagram for Proteus....................................................................................C4 

............................................................................................................................................................ 

Figure D1: Graph Depicting Budget Trend Over Time................................................................D3 

  



 

 

List of Tables 

Table 1: Robot Course Tasks...........................................................................................................6 

Table 2: Distances Between Course Tasks....................................................................................11 

Table 3: Full Team Time Sheet.....................................................................................................19 

............................................................................................................................................................ 

Table A1: Code Functions with Names, Return Values, Parameters, and Descriptions............A15 

............................................................................................................................................................ 

Table B1: Decision Matrices................................................................................................B2 – B3 

............................................................................................................................................................ 

Table D1: List of Items Bought, Quantity, And Cost...................................................................D2 

Table D2: Order Costs, Category Totals, And Budget Track.......................................................D3 

Table D3: Time Sheet for Alek Srode..................................................................................D4 – D5 

Table D4: Time Sheet for Keith Kriston..............................................................................D6 – D7 

Table D5: Time Sheet for Thomas Krisak...........................................................................D8 – D9 

Table D6: Time Sheet for Kevin Wang...........................................................................D10 – D11 

............................................................................................................................................................ 

Table E1: Test Logs............................................................................................................E2 – E10 

 



   

 

 

 

1. Introduction 
Due to an increase in business from the addition of the FEHpingo online ordering app, 

Carmen’s Diner was struggling to keep up with the number of orders. In order to keep up with 

orders, the owners of Carmen’s Diner are investing in launching a strategy that utilizes 

automated vehicles to perform the simpler tasks within the diner. This way, the staff working can 

focus on the complicated tasks, such as human interaction. In order to achieve this strategy, 

management contracted the Ohio State Research and Development (OSURED) team to select a 

prototype to complete these tasks. The design chosen would be used in a restaurant relaunch.  

In order to choose the best robot, a scale model of the diner (referred to as “the course”) 

was constructed by a research team at The Ohio University. Robot prototypes are required to 

complete the tasks setup on the course in a timely fashion and with precision to be eligible for 

final selection [1].  

Multiple teams of four were created in order to have different possible robot concepts and 

designs. The team Hash Browns 1 was made up of the people Kevin Wang, Keith Kriston, 

Thomas Krisak, and Alekzander Srode. Over the course of the design process, performance tests 

for each team acted as checkpoints, one on each day as follows: February 21st, February 28th, 

March 6th, and March 23rd. Each of these tests would assess different robot capabilities [3]. The 

four performance tests were planned to lead up to a final individual test on March 27th, with a 

final group competition on April 4th, 2020. 

The second section, Preliminary Concepts, covers the initial ideas and designs the team 

had in mind for the robot, as well as how the team brainstormed and how the robot was initially 

going to complete the tasks. The third section, Analysis Testing and Refinement, covers what 

problems were found in the robot during testing and how these problems were fixed. The fourth 



2 

 

section, Individual Competition, covers the plan and process to finish the individual competition. 

The fifth section, Final Design, covers the details of the finished robot, including drivetrain, 

chassis, task completion mechanisms, and how these components factored into the budget. The 

sixth section, Final Competition, covers how the robot performed in the final competition. The 

seventh section, Summary and Conclusion, goes over the most important aspects of the project 

and discusses what would have been done had the team been given more time or money. The 

eighth section, Reference, lists all the outside resources the team used when creating this 

document. 

 

2. Preliminary Concepts 

This section covers the brainstorming and design decisions of the team’s robot, along 

with the rules and regulations regarding the robot course runs. 

 2.1 Brainstorming Process  

Each member individually brainstormed task completion methods and mechanisms prior 

to Team H1’s first meeting. These ideas were then reconciled following discussion at the first 

team meeting. The brainstorming criteria included order of task completion, chassis design, 

drivetrain design, and mechanism design to complete each task. Each idea was accompanied by a 

drawing. After discussing their ideas, the team worked together to create a decision matrix as 

shown in Table B1 in Appendix B. The decision matrix involved rating criteria weighted by 

importance. Each idea presented by a group member was rated using the criteria listed within the 

table. The total grade of the idea was listed at the bottom. The decision matrix helped the team 

make unbiased decisions based on the most important aspects for each component. Because the 

decision matrix was a dynamic table, if the team encountered problems after settling on a 



3 

 

decision using the matrix, the team would be able to make changes pertinent to their discoveries. 

The team made three initial designs, as shown in Appendix C in Figure C1, which utilized the 

highest rated components in the decision matrices. The first design involved a splitting forklift, a 

triangular chassis, and three omni wheels. The second design was different from the first in that 

it used a square chassis rather than a triangular one, and rather than three omni wheels, it used 

two omni wheels and one slider. And finally, the third design used a complex lift, a triangular 

chassis, and three omni wheels. 

Following the creation of the decision matrix, the team decided to combine the concepts 

of the first, second, and third designs. Instead of omni wheels, the team selected normal wheels. 

This was mainly because the team was unsure of how the omni wheels worked. The combined 

design involved a triangular chassis, with two wheels on the back side, a slider in the front, and a 

single complex arm on the front. The team then proceeded to create a mockup model of the 

design out of cardboard, foam, tape, and spare pencils. Figure 1 below depicts the mockup 

model. Figure C2 in Appendix C depicts a different view of the mockup. 

 

Figure 1: Picture of robot mockup model from the side. 



4 

 

After the mockup model was created, the team noted a problem with the design. The 

problem was that a triangular chassis was not a good decision as it did not allow for proper room 

on the robot to place the proteus, or any complex mechanisms. And so, instead of the triangular 

chassis, the team decided to go with a square chassis. A second problem was later discovered, 

which was that the intricacy of the complex arm, an arm that could move up and down and turn, 

was determined to be too difficult and would not be precise enough. The idea was scrapped, and 

two new concepts were created in its place. Rather than one single arm, the robot would include 

two arms. An arm on the back side that could extend in and out, and an arm on the front that 

would tilt up and down. 

Once the team had decided on the robot’s chassis, drivetrain, and task completion 

mechanisms, the team needed to decide what would be the best sensors for the robot to use. The 

team knew that there was a dead zone on the course, where RPS would not be available to the 

robot for use. But there were lines on the course available to the robot for following. Because of 

this, the team chose to include a line following kit on the bottom of the robot using three sensors 

and a circuit board. 

Besides the navigation, the robot needed to detect light colors and differentiate between 

blue and red light. For the robot to accomplish this, the team chose to include a CDS cell on the 

bottom of the robot, with a red plastic filter placed over top of the cell. The team chose to include 

a red filter because it was found that the cell could better differentiate between the colors, blue 

and red, when a red filter was placed over top of the cell. 

Along with the hardware decisions made, the team also needed to make initial software 

decisions as well. For the course, a Robot Positioning System (RPS) was included for easier 



5 

 

navigation and position checks of the team’s robot. But because the team had little to no 

knowledge, at the time of brainstorming, when it came to the RPS, the team decided shaft 

encoding would be the best route for programming at the start of the project. 

Another sensor discussed by the team was the bump sensors. At the time of the initial 

design process, the team was unsure whether the robot would need bump sensors or not. Based 

on the team’s initial understanding of the course and how the software would work, it was 

suggested that bump sensors would not be included. But because the team wanted to be prepared 

for possible need of bump sensors, the sensors were also involved in the layout of the robot’s 

chassis and drivetrain. 

 2.2 Robot Tasks, Conditions, and Rules 

Teams’ robots had to quickly, precisely, and consistently perform several different tasks 

under multiple conditions [2], outperforming other teams’ robots in order to progress in the 

competition. These tasks included pressing a jukebox button based on color, dropping off used 

trays, flipping a lever up and down on the ice cream machine, flipping a burger patty, sliding a 

ticket on the ticket rack, and finishing by pressing the final red button [1]. On the next page, 

Figure 2 depicts the robot course with the location of each task, with Table 1 that lists each task 

the robot had to perform, along with the points assigned to each task. 



6 

 

 

Figure 2: Picture of the robot course (Diner Scale Model). The numbers on the figure depict the locations of tasks. 

One (1) is the final button and start light. Two (2) is the trash bin. Three (3) is the sink. Four (4) is the ticket rack. 

Five (5) is the burger. Six (6) is the jukebox. And Seven (7) is the ice cream machine [4]. 

 

Table 1: Tasks for robot to complete on the course, along with points allotted to each task [4]. 

Primary Tasks Points 

Initiate on start light 8 

Press the final charging button 8 

Return tray to either trash bin or sink 7 

Move ticket from starting position 8 

Any ice cream lever is flipped down 8 

Any ice cream lever is flipped back up 7 

Press any juke box button 8 

Press the correct juke box button 7 

Burger flip is initiated 7 

Burger flip is completed 7 

    

Possible Primary Task Points 75 

    

Secondary Tasks   

Move ticket to final position 6 

Ticket remains in final position 4 

Only correct ice cream lever is flipped down 7 

Ice cream lever is left in down position for at least 7 seconds 5 

Hot plate is returned to initial position 3 

Possible Secondary Task Points 25 

    

Total Possible Task Point 100 

    

Penalties   

Interfering with a competitor's robot DQ 

 



7 

 

The conditions that the robot had to meet were varied. The first condition was that the 

robot had to be within the size constraints of 9 inches long, 9 inches wide, and 12 inches tall. The 

second condition that had to be met was the robot was required to be fully automated. Using a 

provided proteus, the team needed to make sure the robot worked only though automated code. 

The robot could not transmit or receive any wireless signals, except from RPS and the robot was 

not allowed to be touched or controlled by anyone during its tests. Constraints also pertaining to 

the proteus included no adhesives permitted on the proteus, the proteus could not be used as a 

sensor, accept the when using the accelerometer, and the proteus was not allowed to be used in 

the structure or mechanisms of the robot. 

The third condition for the robot was that the cost of all parts that went into making the 

robot, whether used on the robot or not, had to be within a total of $160. Teams that exceeded 

their $160 budget would lose one point for every $0.50 over the budget. Budgets that were under 

the $160 limit received an additional score multiplier of 0.005 for every dollar saved, up to $40. 

For example, if the team scored the maximum score possible for the final competition, which 

was 100 points, and the team saved the maximum amount of money allowed for extra points, 

$40, then the total extra points the team would have received would have been 0.005 times 40 

times 100, or 20 extra points. 

The fourth condition was that all robots were required to have a QR code placed 9 inches 

above the course ground during all performance tests, practice runs, and competitions. The QR 

code also was required to be fully visible to RPS. This was required so that all robots could be 

kept track of while on the course. This was a requirement following Performance Test 2, as QR 

codes had not been distributed to teams up until that point. 



8 

 

The fifth condition the robot had to meet was that no adhesive material could contact the 

course surface at any point during a robot’s run. And the sixth condition was that all parts on the 

robot, including fasteners and adhesives, had to come from the FEH Robot Store. Any parts or 

adhesives that a team wanted to use on their robot that did not come from the FEH Robot Store 

had to be reviewed and approved by the team’s GTA. The cost of the item used also had to fit 

within the robot budget of the team using that item. 

Along with the conditions, the robot also had to follow a set of rules for the competitions. 

A list of the rules is given as follows: 

1. The team will have one minute to setup their robot. Once the run has started, the robot 

must complete all tasks within two minutes.  

2. The robot must be connected to the RPS system, and the QR code should be 

detectable. 

3. The robot cannot interact with another robot on another course. Any object placed in 

or tossed onto another course is not allowed. The robot must also not leave behind 

any object on the course that could cause interfere with another robot. 

4. A part that detaches or is lost from a robot, intentionally or unintentionally, is defined 

as a loose or disposable part. Course officials may choose to confiscate any loose or 

disposable parts at the end of a run. 

2.3 Team’s Task Completion Decisions 

To start the task completion decisions, the team needed to figure how the robot would 

complete each task. Through long discussions, the team eventually came to an initial layout for 



9 

 

completing the course. The robot would begin at the starting light. From there, the robot would 

go up the ramp and place the tray into the sink. Then the robot would move to the receipt and 

push it to the opposite side. Next, the robot would move to the burger and flip it. Then the robot 

would move to the ice cream machine and flip the lever down, wait seven seconds, and flip it 

back up. Next, the robot would head back down the ramp to the jukebox, press the correct button 

the jukebox, and finally head back to the starting position to press the final button. Figure 3 

below depicts the path the team chose for the robot to traverse the course. 

Next, the team determined how the robot would complete each of these tasks. From some 

more discussion, it was decided that the front arm would be used to complete the tray, ice cream 

lever, and burger tasks. Because the front arm could move up and down, it could hold the tray, 

and then slide it into the sink when needed. It could move down to flip the lever down, and then 

move back up to flip the lever back up. And it could move up, along with the turning of the 

robot, to flip the burger and put the grill back down. 

To complete the receipt task, the robot would use the back arm. Because the back arm 

could move in and out, when the robot was in the right position, the arm could extend out 

between the edge of the receipt rack and the receipt itself. From there, the robot could move 

Figure 3: Picture of planned full path taken by robot in competitions. 



10 

 

forward, pulling the receipt along with it. And once the robot reached the end of the receipt rack, 

the arm could be pulled back in, allowing the robot to move to the next task. 

To complete the jukebox task and the final button pressing task, it was determined that 

the robot could run into the buttons. No arm was necessary for pressing the buttons. 

 

3. Analysis, Testing, and Refinements 

This section covers the analysis and refinements of the robot’s drivetrain and chassis and 

mechanisms. It also covers an explanation and analysis of testing done on the robot over time. 

3.1 Analysis of the Drivetrain 

The drivetrain included anything that helped the robot move. In the team’s case, the 

drivetrain included sliders, motors, and wheels. At first, the team wanted to use omni wheels to 

allow the robot to move more freely. But because the team members did not understand how the 

omni wheels worked at the time of analyzing, the team began considering dubro rubber wheels 

more. Upon further inspection of the dubro wheels, the team decided that the robot would work 

just as well with the dubro wheels as it might with the omni wheels. The team decided this 

because when considering how the code would work, the team knew how to turn the robot 

without omni wheels. And since no team member at the time understood the how the omni 

wheels functioned, the team wanted to play it safe. So dubro wheels were selected. But the dubro 

wheels came in three different diameters, 2.0 inches, 2.5 inches, and 3.0 inches. 

 

 



11 

 

Table 2: Distances between task locations 

Locations Distances (in.) 

Start to Sink 46 

Sink to Receipt Start 30 

Receipt End to Burger 25 

Burger to Ice Cream 25 

Ice Cream to Jukebox 48 

Jukebox to Finish 30 

Total Distance 204 

To determine the best diameter of wheel for the robot, the team analyzed the motors that 

were available to teams. To start the analysis, the team measured distances between tasks on the 

course. The distances between different tasks are given in Table 2 above. 

The total distance between the tasks the robot needed to complete, in the order the team 

decided upon, was 204 inches. Next, the team needed to estimate how long it would take the 

robot to complete the tasks. For the tray, the estimated time to complete was 5 seconds, as the 

robot only had to place the tray into the sink. For the receipt, the estimated time was 10 seconds, 

as the arm had to extend outward, allow the robot to move from start to finish, and then allow the 

arm to retract back in. For the burger, the estimated time was 5 seconds as the robot could move 

the front arm up and turn at the same time, therefore not requiring long to complete the task. For 

the Ice Cream lever, the estimated time for completion was 10 seconds. 3 seconds were 

dedicated to moving the arm of the robot up and down, while 7 seconds were dedicated to 

waiting and repositioning the robot, as the requirement of the secondary task indicates. For the 

Jukebox, the estimated time of completion was 10 seconds, as the robot needed to read the light 

to get the correct button, and then move forward and press the correct button. Finally, the 

estimated time for the last button was less than a second, as pressing a button is almost instant. 



12 

 

From the estimated times for task completion, the total time required for task completion 

was 40 seconds. As a recommendation from the staff in charge of the project, the team also 

added a buffer time of 10 seconds to our total so that the team could make sure the motor and 

wheels we chose worked well and had some leniency. That brought the total time for tasks to 50 

seconds. Because for competitions the robot had only 2 minutes, or 120 seconds, to complete the 

course, subtracting the task time from the allotted time gave the team an estimate of 70 seconds 

that the robot would have to move between tasks. 

Using the time of 70 seconds between tasks and the total distance the robot would have to 

travel, the team determined the minimum linear speed required for the robot to traverse the 

whole course in time. This was done using Equation 1 below. Upon calculating, the found 

minimum was 2.9 inches/second. Next, the team selected a wheel size believed to work well with 

the robot. Because the team was already thinking about using Igwan motors, and since there 

were adapters between Igwans and dubro wheels for 2.0-inch and 2.5-inch diameters, the team 

went with the 2.5-inch diameter wheels. 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑝𝑒𝑒𝑑 =
𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑇𝑟𝑎𝑣𝑒𝑙

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑇𝑟𝑎𝑣𝑒𝑙
          (1) 

Using the dimensions of the wheel, the rotational speed of the motors required were 

calculated using Equation 2 on the next page. Since the wheels selected had a diameter of 2.5 

inches, to find the circumference of the wheels, 2.5 inches was multiplied by pi (π), which gave a 

circumference of about 7.854 inches. Then the rotational speed was calculated, dividing the 

minimum linear speed, 2.9 inches/second, by the circumference of the wheels, 7.854 inches. This 

gave a rotational speed of 0.369 revolutions/second. But because the rotational speeds of the 



13 

 

motors were given in revs/min (RPM), the value was multiplied by 60 sec/min to convert 

revs/sec into RPM. This gave a rotational speed of 22.14 RPM. 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑝𝑒𝑒𝑑 =
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑝𝑒𝑒𝑑

𝑊ℎ𝑒𝑒𝑙 𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒
          (2) 

Now the team needed to determine the minimum torque required by the motors to move 

the robot. This minimum would be the torque required to move the robot up the ramp on the 

course. To find this torque, the team started by estimating the combined weight of all the parts 

hat were expected to go on the bot at the time. This total added up to an estimate of ~1556 

grams, or ~54.89 ounces. Then the team had to find the angle of the ramp. To find this, the team 

measured the height, length, and hypotenuse of the ramp, which were measured to be 3 inches, 

11 inches, and 11.4 inches, respectively. Then using Equation 3 below, the angle of the ramp was 

calculated. The calculated angle came out to be ~15.3 degrees. 

𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝑅𝑎𝑚𝑝 = arctan (
𝐻𝑒𝑖𝑔ℎ𝑡

𝐿𝑒𝑛𝑔𝑡ℎ
)           (3) 

Now that the team had an estimated weight, and the angle of the ramp, the required 

torque to get up the ramp could be calculated. First, using the relationship given in a PowerPoint 

by the faculty in charge of the project [5], the team could calculate the required minimum force 

to move the robot. This force turned out to be 22.484 ounces of force. With the minimum force 

needed, the torque to move the robot up the ramp could be found. To do this, Equation 4 below 

was used, and the minimum torque required to move the robot up the ramp was calculated to be 

28.105 oz-inch. And since the robot was using two motors, the required minimum torque of one 

motor turned out to be half that, which was 14.0525 oz-inch. 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑇𝑜𝑟𝑞𝑢𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = (𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐹𝑜𝑟𝑐𝑒) ∗ (𝑊ℎ𝑒𝑒𝑙 𝑅𝑎𝑑𝑖𝑢𝑠)    (4) 



14 

 

With the required minimum torque, 14.0525 oz-inch, and the minimum rotational speed, 

22.14 RPM, the team could select the best motor for the robot. Using a provided graph of the 

torque versus rotational speed of all motors available [6], the team plotted a point on the graph 

representing the minimum rotational speed and torques required for the robot. This graph with 

the added point is shown in Figure 4 below. 

Figure 4: Graph of motor torques (oz-in) and rotational speeds (RPM) [6]. Blue point indicates team’s minimum 

required torque and rotational speed. 

 

Using the graph and the added point, the team made note of all the motors that met or 

exceeded the requirements for the robot. Turned out that with the team’s calculations and 

estimates, all motor options passed the requirements. Because of this, the team decided to stick 

with the idea of using Igwan motors for the robot as the Igwans did pass the team’s requirements. 

The Igwans also included shaft encoders, reducing the work the team would have had to put into 

making shaft encoders. 



15 

 

3.2 Analysis of the Chassis and Mechanisms 

Closer analysis of the preliminary designs and mockup model revealed multiple flaws in 

the initial idea. One observation made was that using a triangular chassis to fit the 9 inches long 

by 9 inches wide condition made it difficult to fit both the complex arm and proteus onto the 

robot. This was because accommodating for the width of the wheels rendered the chassis too 

small, not leaving enough room for the proteus or mechanisms on top. 

Another observation made from the mockup model was that the preliminary arm design 

may have been too complex and heavy to be easily constructed and fixed. Because the complex 

arm would have been able to move up, down, left, and right, the arm would have required at least 

two motors. And since fitting one arm onto two motors, or vis versa, was deemed too difficult 

and may have caused the arm to end up being inaccurate, the idea was replaced. 

As a result of these observations and the drivetrain analysis, the team decided to alter the 

robot design, and replaced the triangular chassis with a square chassis with two sliders towards 

the front, and two dubro wheels powered by igwan motors in the back. Then the complex arm 

was replaced with a single arm on the front that tilted up and down, and a single arm on the back 

that extended in and out. 

 3.3 Testing and Refinement 

Testing logs were made to record the changes and refinements that were made for each 

performance test (2/21, 2/28, 3/06). These testing logs made note of the date, the location, the 

reason for test, the members present, the changes made as a result, number of runs, observations 

of the test, and notable results. Videos were taken of random runs during each test. 



16 

 

The refinements made during testing mainly involved tweaks in the programming of the 

robot. Throughout all three of the performance tests, movement was a constant issue, which 

needed big fixes in the beginning and small changes toward the end. Big fixes included repairing 

the movement function to allow for accurate forward travel in instances greater than four inches, 

as well as accurate turning functions for frequently used directions (90 degrees either way). 

Small changes involved altering the starting and ending position of the arms, as well as small 

movement tweaks for better execution of the performance test. Further small changes included 

sleep functions and motor power modifications. 

For Performance Test 1 (pressing the jukebox button), movement was a big concern, 

constant tweaks had to be made and many of the early test runs were ruined by crooked forward 

driving and inconsistent turns. After the team made the driving and turning relatively consistent 

on flat ground, the robot managed to make it to the jukebox light. It managed to detect red light 

just fine but could not properly detect blue light. In order to fix this problem, the team changed 

the code so that if the robot detected any light, it would default to blue unless it detects red light. 

Afterward, the robot was having trouble fully pressing the jukebox buttons (chassis was too 

short). This was fixed by adding a tall barrier to the front of the robot in order to better reach the 

button. It was also noted that the robot was going crooked left up the ramp, this problem was 

fixed by increasing the motor power (speed) going up the ramp. The robot strayed less from its 

intended path. 

Inconsistent forward travel distance was another bane while testing for Performance Test 

2, this test involved dropping the tray in the proper area and sliding the receipt. Constant small 

tweaks were made for the robot’s movement and turning because the route chosen required 

accurate placement prior to sliding the receipt. The tray deposit task was successfully completed 



17 

 

after the fifth time testing for it. The receipt sliding was where the team spent most of the testing. 

After depositing the tray in the sink. The robot kept bumping into the receipt box, positioning 

crooked, or positioning too far from the receipt. These problems kept the team from being able to 

complete the receipt slide sooner. A small tweak in movement to solve one problem caused 

another. Eventually, the robot arm tasked with sliding the receipt was extended to make it easier 

to position the robot. This refinement made the difference in being able to slide the receipt or 

not. 

Performance Test 3 involved flipping the patty. The team initially found great success 

with flipping the patty, able to move the patty and return the hot plate to its original position in 

one smooth motion, but constant hardware failures caused the team to backtrack, fix the robot, 

and retest. The front arm was tasked with flipping the patty. The connection between the motor 

and the axle of the front arm was the main source of problems. Due to stress from testing and an 

inherently weak connection, the axle got disconnected from the motor multiple times. Each time, 

the team tried a different method of fixing the two pieces back together. First epoxy, then gorilla 

glue, then super glue, then hot glue. The team eventually got the two pieces relatively stable by 

attaching a rubber tubing to the metal of the axle in order to give the glue a better grip. 

Following Performance Test 3, the epoxy, gorilla glue, super glue, and hot glue all came 

loose from around the motor and axel for the front arm. Because of this, the rubber tubing was 

removed from the axel, as it seemed to add no extra help, and the gluing was redone. 

 

 

 



18 

 

4. Prototype Status 

This section covers the status of the robot and the time and budget that went into the 

creation of the prototype. 

4.1 Budget and Time Spent 

The total budget allotted to the team at the start of the project was $160. Over the course 

of the project, the team made 17 different orders. The orders totaled a cost of $144.11, with a 

remaining $15.89. Of the spent budget, there were five categories that the money fell into. These 

categories included the robot’s chassis, drivetrain, front arm, back arm, and sensor electronics. 

Depicted in Figure 5 below is each of these five categories and the remaining budget, with the 

percent of the total budget that went into each section. A sixth section was included for 

cardboard alone to help show how cheap the material was for the robot’s construction. 

 

                 Figure 5: Pie chart depicting the rounded percentages of the total budget that went into each category. 

Drivetrain
40%

Chassis
14%

Front Arm
15%

Back Arm
17%

Sensor 
Electronics

5%

Cardboard
< 1%

Remianing Buget
10%

Percent of Total Budget in Stated Categories



19 

 

 

Tables D1 and D2 in Appendix D give a closer breakdown of parts bought, in what 

quantity, and their total cost, as well as the cost from each order that went into what category of 

the robot, and the progression of the decreasing budget after each order. Figure D3 also located 

in Appendix D gives a visual representation of the budget progression in Table D2. 

Along with budget, each team member had to keep track of their time spent on different 

parts of the robot. These areas of work included Documentation, Project Management, CAD, 

Coding, Testing, Building and Construction, and any Other smaller categories, or when time was 

spent equally on multiple sections at once. Table 3 below is the team’s representation of how 

much time was spent individually and together on each category of the project, along with the 

total time spent, by each person, working on the project. 

Table 3: A table depicting individual times for each category, group effort times for each category, and total time 

spent by each person on the project overall. Times are given in minutes. (NOT YET COMPLETE) 

 Documentation 
Project 

Management 
CAD Coding Testing 

Building and 
Construction 

Other  Total 

Thomas 
Krisak 

920 min 340 min 390 min 0 min 925 min 465 min 410 min  3450 min 

Keith 
Kriston 

1020 min 735 min 345 min 480 min 525 min 1335 min 150 min  4590 min 

Alek 
Srode 

2355 min 660 min 320 min 840 min 955 min 700 min 865 min  6695 min 

Kevin 
Wang 

1795 min 1175 min 440 min 500 min 1345 min 785 min 405 min  6445 min 

          

Total 6090 min 2910 min 1495 min 1820 min 3750 min 3285 min 1830 min   

Tables D3, D4, D5, and D6 in Appendix D provide a time sheet breakdown of each group 

member’s time spent over the course of the project. 

4.2 Chassis and Drivetrain 

As outlined in preliminary concepts and brainstorming, the team initially intended to use 

a triangular chassis with a three-wheel omnidirectional drivetrain. After a brief mockup and 



20 

 

some further brainstorming and discussion, the team changed the design. The final robot instead 

utilized a rectangular chassis with a powered two-wheel and two-slider drivetrain, a design 

which resulted in a cheaper yet more reliable and workable robot.  

4.2.1 Chassis 

The chassis was designed as three layers, each laser-cut into MDF per design of 

the team. A three-layer design was chosen to enable different holes to be cut for different 

purposes in each layer. With the separate pieces held together using machine screws and 

nuts, it provided the platform for all the mechanisms of the robot and the Proteus 

controller. 

The bottom layer of the chassis had multiple holes laser-cut into it for multiple 

purposes. At the top and bottom, two large rectangular holes were used for wire 

management, helping organize wires both from the drivetrain and arm mechanisms on the 

robot. The smallest holes in the corners of the piece were designed to mount bump 

sensors, although these sensors never came into use during testing. Additional hole were 

cut into the chassis piece for mounting the drivetrain and the line following kit 

respectively. The holes were shaped hexagonally to accommodate the heads of the screws 

used to secure these mechanisms and additionally secure the chassis together. Initially too 

small for their purpose, these holes required the only post-design modification to the 

chassis: sanding them to the proper size. 

The middle layer of the chassis also had multiple cuts, many of which aligned 

with the bottom layer’s holes for the same purposes. Firstly, the wire management holes 

were placed in the same position with the same size and shape as those on the bottom 

layer. Furthermore, the holes for mounting the line following kit and drivetrain were 



21 

 

aligned with those on the layer below. These holes were circular rather than hexagonal, as 

they did not need to accommodate the heads of the screws. 

Like the other two layers, the top layer featured certain cuts for specific purposes. 

Once again, two large holes were placed at the top and bottom for wire management. In 

between these holes, one large cut was made to hold the Proteus controller in place on the 

top of the chassis. Holes to secure the chassis together, aligned with those used to secure 

the drivetrain and line following kit, were placed in places appropriate to the holes on the 

other two chassis pieces. 

4.2.2 Drivetrain 

The drivetrain used two wheels paired with two sliders in a rear-wheel-drive 

configuration. As outlined in Analysis of the Drivetrain, the team chose to use two-and-a-

half-inch diameter wheels. These wheels were powered by Igwan motors, mounted to the 

chassis via prior-designed 3D-printed motor mounts. This configuration, including 

wheels and motors, was placed on the rear of the robot while the two sliders were 

mounted on the front. Unlike the motor mounts, the sliders were designed solely by the 

team to their desired specifications. 

The first problem with the drivetrain arose during testing, where the wheels would 

become detached from the rest of the drivetrain. This problem occurred frequently 

enough to cause the team to permanently attach the wheels to the motors using super glue 

and hot glue. This fix was the only change to the drivetrain design that the team made. 

However, due to a hastily done glue job, one of the wheels was permanently angled 

inward, a second drivetrain problem that likely resulted in inaccurate movement. 



22 

 

4.3 Task Completion Mechanisms 

The first Performance Test required the robot to press one of two colored buttons on the 

jukebox corresponding to color of the light in front of the jukebox. In order to accomplish this, a 

CDS cell was attached to the bottom of the robot, as seen in Figure 6 below. The CDS cell 

allowed the robot to determine the brightness of a light below it. A piece of cardboard was 

crafted into a cylinder that surrounded the cell, minimalizing the amount of ambient light that 

reached it. A red filter was attached at the bottom of the cylinder, which increased the contrast 

beneath it. 

Figure 6: Picture of robot’s underside showing the CDS cell, motors, and line following kit. 

 

The CDS cell was able to detect the difference between the two colors of the light, 

however it had some inconsistencies. The range of values for the colors were fairly large, as the 

cell may see the light as a different brightness under different circumstances, such as difference 

in ambient light, a different positioning of the robot over the light, or variance between courses. 



23 

 

The red filter helped to differentiate the colors, however the ranges needed to be tweaked to 

guarantee that the colors were detected properly. 

The chassis was not tall enough to allow the robot to push the button. A piece of 

cardboard was attached to the front of the robot and reinforced with tape, as shown in Figure 6 

on the previous page. The cardboard added the necessary height in order to reach the button and 

was sturdy enough to press the button without collapsing or falling over.  

The second Performance Test required the robot to deposit a tray into either the trash can 

or sink and slide the ticket across its track. In order to deposit the tray, an arm was fashioned out 

of cardboard to hold the tray, as seen in Figure 7 below. The arm was then fastened to an axle 

connected to a servo motor. The arm had enough clearance to turn roughly 45 degrees up or 

down. When the robot was powered on, the arm would angle itself upward to allow the tray to be 

placed on the arm, then when the robot reached the sink, it would angle the arm downward, 

causing the tray to fall into the sink. 

Figure 7: Picture of robot’s front arm. 

 



24 

 

Initially, the arm had issues holding the tray; the weight of the tray would push the arm 

down. At one point, the hot glue used to hold the arm onto its axle broke from the weight. The 

axle also had issues staying connected to the servo motor. Various methods were used to 

strengthen the axle’s connection to both the arm and the motor. To hold the arm in place, 

superglue was applied to the axle, then hot glue was added to strengthen the connection. To 

connect the axle to the motor, superglue was applied to the axle and then shrink tubing was fitted 

over the connection and shrunk to hold the axle in place. 

In order to slide the ticket, another arm was attached to the back of the robot, as seen in 

Figure 8 below. Another servo motor was modified to act as a DC motor, which lacked the 

precision of a servo motor, but allowed it to turn multiple rotations. A gear was attached to the 

motor, which allowed the arm to extend or retract. When the robot was properly aligned with the 

receipt, the arm would extend and the robot would drive forward until the receipt reached the end 

of the track, then finally the arm would retract allowing the robot to move independent from the 

receipt. 

Figure 8: Picture of robot’s back arm. 

 

The back arm had inconsistencies when pushing the receipt. One such inconsistency was 

that the arm would not always extend or retract. The gear on the motor and the teeth on the arm 



25 

 

were not the same shape, causing the arm to sometimes fall out of alignment with the gear and 

stop moving. This was solved by creating a cardboard track for the arm to slide down that would 

keep it aligned with the gear. The arm would also break the track if caught on an object. The 

track was reinforced with more cardboard; however, the problem was never solved. Whenever 

the track would break, it was hastily repaired. 

For the third performance test, the robot needed to flip the burger patty to the other side 

of the stove. An erector set piece was attached to the same axle as the front arm, as seen in 

Figure 9 on the next page. The erector set piece acted as a longer front arm, which was able to 

reach the hot plate and flip the burger patty. To more easily move the hot plate from its resting 

position, the robot would move the arm upwards while turning to the right. After flipping it, the 

robot would move the arm a little further upwards, as not to catch the hot plate, and move a little 

further to the right. Then the arm would move back down, and touch the handle of the hot plate, 

flipping the hot plate back down if it got stuck in the up position. 

Had the fourth Performance Test been held, it would require the robot to navigate to the 

correct ice cream lever, flip it down, then flip it up after seven seconds had passed. In order to 

navigate to the correct ice cream lever, three optosensors were attached to the robot, allowing it 

to determine if it was on a line. An algorithm was being developed to keep the robot moving 

across the line using the optosensors. Once the robot had reached the correct lever, it was 

planned to use the same arm that held the tray in order to flip the lever.  

The erector set piece often had issues staying connected to its axle, as it was longer and 

moved a heavier object. Both attributed to the increased torque the arm experienced, causing it to 

sometimes break off from the axle. The arm was reinforced with superglue and hot glue to keep 



26 

 

it connected to the axle. Figure 9 on the next page depicts the robot following the changes made 

from the third performance test. For a side view of the robot, see Figure C3 in Appendix C. 

 

Figure 9: View of robot from front side. 

 

4.4 Code 

The first performance test required the robot to be able to navigate on its own, detect the 

color of a light on the course, and press the similarly colored button on the jukebox. In order to 

navigate on its own, the robot used the shaft encoding built into the IGWAN motors. Functions 

such as turnFor, driveForwardFor, and driveBackwardFor took an input in inches, then converted 

it into the counts of the motor, which could be used to make the motors run until it reached the 

specified distance. 

In order to detect the color of the light on the course, the robot used a CDS cell, which 

would send a voltage between 0 and 3.3 Volts, with a higher voltage representing a lower 

brightness. The function determineLightValue would then compare the voltage to two ranges 

that contained one of the colors, then change the color of the touch screen to the color of the 



27 

 

light. The robot used the color to determine its path toward the jukebox, pressing the button 

matching the light. 

The second Performance Test required the robot to deposit the tray into either the sink or 

trash can and slide the ticket across its track. The arm holding the tray would turn with a servo 

motor. The motor could be adjusted with the member function SetDegree, which allowed the arm 

to deposit the tray into the sink. The back arm was extended and retracted by a motor, allowing it 

to reach the ticket. The functions extend and retract ran the back motor until the arm extended to 

its maximum length and retracted the arm to its minimum length, respectively.  

The third Performance Test required the robot to flip the burger patty. The same motor 

that controlled the arm holding the tray also controlled a longer front arm that could reach the 

stove and flip the burger. The same member function setDegree was called to adjust the arm and 

flip the patty. 

 

5. Future Development 

This section covers the planned future developments to be made to the robot and code. 

 5.1 Code Development 

The fourth Performance Test, had it been held, would have required the robot to navigate 

to the correct ice cream lever and flip it down, then flip it back up after seven seconds had 

passed. RPS was unavailable near the ice cream lever, requiring the robot to navigate using 

another method. The robot was equipped with three optosensors, which were planned to be used 

to follow lines and ensure the robot had navigated toward the correct lever. An algorithm was 

being developed, utilizing the optosensors to keep the robot on a line marked on the course, but 



28 

 

was not finished. To finish the development, the time required would be a small amount as most 

of the code was already written. The code just needs to be tweaked to the course and robot’s 

standards. The planned algorithm would check which optosensors could see the line and 

determine the robot’s position relative to the line. The robot would then use that information to 

adjust its angle to stay on the line. 

The same arm that had held the tray was planned to be used to flip the lever. Once again, 

setDegree was planned to lift the arm up, push the arm down, maneuver the arm under the lever, 

and finally push the lever back up after seven seconds had passed. In order to finish the code for 

the fourth Performance Test, approximately one hour would be necessary to transition the line 

following algorithm, and another would be necessary to test and debug the code. 

The functions debugAllSensors and displayCoordinates were designed to aid in testing 

and debugging the robot. debugAllSensors displayed the information each sensor was receiving. 

This was called at the beginning of each run to ensure that all sensors were connected properly 

and gave appropriate values. displayCoordinates displayed the information RPS sent to the robot 

about its current position. The method would display the x and y positions as well as the 

direction the robot faced as an angle in degrees counterclockwise of the x-axis. 

The functions turnTo and driveTo were being developed in order to utilize RPS to make 

navigation easier. turnTo was designed to accept an RPS coordinate, then calculate the angle it 

needed to turn in order to face it, then turn until it reached that angle. driveTo was designed to 

call turnTo in order to face the desired coordinate then calculate the distance between its current 

position and the destination. The robot would then drive until it reached the desired coordinate. 

These functions never reached implementation as bugs in the code prevented the team from 



29 

 

doing so. Table A1 lists the user defined functions that were implemented or were meant to be 

implemented and describes what each function was meant to do. Figure A2 provides a flowchart 

that depicts how the team planned on coding the robot, using the user defined functions from 

Table A1, to complete the course. These functions still needed to be debugged, roughly one hour 

for each of them would be necessary to finish debugging. 

 5.2 Hardware Development 

After assembling the chassis of the robot, a problem noticed by the team, but of not too 

much concern at the time, was that the adapters that connected the wheels to the motor shafts did 

not have a strong connection neither to the wheel nor the shaft. Because of this, the wheels kept 

falling off the adapters, or the adapters off the shafts. The solution at the time was using hot glue 

to connect the wheels to the adapters. That had fixed the problem between the wheels and the 

adapters. But later, the hot glue did not maintain its hold between the two parts and so the wheel 

started coming off again. So, the team used super glue. When this worked well, the team also 

decided to go ahead and do the same between the shaft and the adapter. But due to poor gluing 

quality to the shaft, one of the wheels ended up at an angle with the ground that was not 90o. 

Therefore, one future development that should be made is the correction of the wheel’s slant. 

This way, the robot will not move unpredictably and will instead be more accurate and 

repeatable. This development would take a short amount of time as the adapter would only have 

to be removed from the shaft, and then re-glued back onto the shaft in a more careful fashion. 

The next area that would require further development is the back arm. One problem with 

the back arm is that the connection between the gear and the toothed rack strip is too wide. 

Because of this, the rack strip would not extend out or in properly. Therefore, the fix that would 

be made to the back arm is to tighten the gap between the rack strip and the gear. To do so, the 



30 

 

stand of cardboard on which the motor for the gear stood would need to be moved closer to the 

rack strip. But not so close that it would get in the path of the strip and cause unneeded friction. 

So, if the gear needed to be moved closer to the strip still, then the motor itself would be moved 

closer towards the strip. This would not take long at all as the stand can easily be removed, along 

with the motor, because they were glued in place using hot glue. The stand may have to end up 

being remade though, depending on how much damage it receives from being removed. 

Another problem with the back arm was that the carboard walls on either side of the stand 

that the rack strip sat on were too close to the strip, and the hot glue used had managed to get on 

the stand. Because of this, the rack strip was experiencing too much friction, further limiting its 

extending and retracting capabilities. To fix this, the cardboard walls would have to be removed 

and the excess hot glue removed. Then the walls would have to be re-glued, carefully, onto the 

stand. And if the walls were damaged in the removal, then the walls would also need to be 

remade. This development’s time requirement, like the last, depends on how badly damaged the 

walls are. If they are badly damaged, they would have to be remade. Other than that, because the 

walls only require re-gluing carefully, the task would not long. 

Lastly, the front arm was too fragile to withstand testing and perform reliably. This was 

due to the connection between the axel, the part that the arm feature attached to, and the gear of 

the motor was fragile. The front arm’s axel was attached to the gear of the motor by first filing 

down one end of the axel, and then inserting it into the hole of the gear. After that, the 

connection was cemented using hot glue. But from testing the arm, the connection between the 

gear and the axel was too slipper. Because the axel was made from metal, the hot glue did not 

want to stick to it. To remedy this, the team attempted to use epoxy instead, as epoxy would have 

been more solid and held tighter. But because the epoxy never dried properly between the plastic 



31 

 

and the metal, the epoxy would not hold either. As a last attempt, the team used super glue as 

well, but to no avail. 

Therefore, based on the previously failed attempts to properly connect the front arm axel 

to the motor’s gear, the team had decided the best method would be to improve the connection 

using the key method, where the gear and axel are formed, molded, and filed down in such a way 

that the two parts fit together perfectly. This would improve the fit and connection between the 

two parts, and hopefully fixing the strength of the front arm. This development would take the 

most time out of all the Hardware Developments, taking upwards of an hour or two, because the 

front arm would have to be taken completely apart. From there, the axel and gear would have to 

be shaped in just the right fashion that they match each other’s shape and fit together snuggly. 

Then the arm would have to be reassembled, making sure any glue used in the reassembly of the 

arm does not get stuck to the stand that holds the arm’s axel up. 

If these developments are incorporated into the robot, the robot would meet a complete 

prototype state. With the front arm and back arm fixed and developed, the mechanisms for 

completing each task will be ready to take on the full course. And with the improvement of the 

wheel’s positioning, the robot will be able to move in a more predictable, repeatable, and reliable 

fashion. Therefore, making the hardware aspect of the robot ready for the course. 

 

6. Summary and Conclusions 

The team was assigned the job of creating a robot that would complete kitchen tasks for 

the company Carmen’s Diner. Before creating the full robot, the team created a fully functioning 

robot prototype of the size 9” x 9” x 12”. A model course was built by a research team at The 

Ohio State University for testing on. 



32 

 

The required tasks for the robot to complete included pushing a button on a jukebox 

depending on the color of a light nearby. The robot also had to place a tray in a sink, or on the 

top of a trash bin. Other tasks included pulling an ice cream lever and waiting seven seconds 

before pushing it back up, flipping a burger over from a hot plate, and pushing a receipt down a 

ticket rack. And finally, the robot was to return to its starting position and press a button. The 

robot would have two minutes in total to complete these tasks. 

To start the project process, each team member brainstormed multiple different robot 

designs and ideas. These designs involved separate models and designs of drivetrains, chassis, 

and task completion mechanisms. The selected design was to have a triangular chassis, two 

motors for the drivetrain using omni wheels, and a single complex arm on the front. But after 

careful reconsideration due to problems with the design and team preferences, the design was 

changed. The final selected design was a robot that would have a rectangular chassis, two normal 

wheels on two motors for the drivetrain, and two separate arms. One front arm and one back arm. 

The team also decided to include a three optosensor line following circuit with a CDS cell on the 

bottom of the robot. 

The path the team had planned on running the robot was decided to be in an almost figure 

eight fashion. To start, the robot would head up the ramp and place the tray in the sink. From 

there, the robot would head to the ticket and push it all the way over. Then the robot would move 

to the burger and flip it. Following that, the robot would head to the ice cream machine and flip 

the lever. Lastly, the robot would head back down the ramp to the jukebox and press either the 

red or the blue button, before heading back to the start to press the final button for course 

completion. 



33 

 

For prototype construction, the team was given a starting budget of $160 for buying parts 

to build. To buy needed parts, the team used the FEH Robot Store, as all parts, unless checked 

with the team’s GTA, were to come from the Robot Store [7]. Over the course of the project, the 

team spent a total of $144.11 and had $15.89 remaining for any other parts should they be 

needed. 

The plan for the code was to develop multiple user defined functions that would allow the 

construction of code to flow smoother. These such functions included one that would have the 

robot turn a requested angle amount either left or right. One that would have the robot move 

forward a requested distance and one that would move backward a request distance. And 

functions that would connect with the RPS to help check the robot’s position and angle to make 

sure it was where it was supposed to be. But due to unforeseen events, the project was halted and 

the RPS functions could not be finished. The robot was to also use a function that helped it 

follow the lines on the course in conjunction with the other functions but ended up incomplete 

due to the halted project. 

The robot ultimately had its strengths and its weaknesses. The first of its strengths, the 

code was workable in that it was easily tweaked between tests, allowing changes to be made 

wherever and whenever they were needed. Adding to this list of strengths, the chassis proved a 

solid base for the robot, facing no problems during testing. Finally, the drivetrain’s repair was 

successful in that the team did not see the wheels detach after they were secured with glue. The 

glue, however, led to the first weakness of the robot: its poor navigation. Due to the 

aforementioned subpar glue job, the robot’s movement was difficult to predict, requiring 

extensive testing and tweaking to achieve the route that the team wanted. The arm mechanisms 

were also delicate, not only requiring extensive tweaking but also constant repairs and 



34 

 

adjustments to function. Due to these constant changes, the routes the robot took were often 

unrepeatable, requiring even more tweaking even in the wake of a successful test. 

Since the project was halted, the team was unable to finish the wanted work on the robot. 

This work included both software and hardware aspects. On the software side, multiple functions 

were left unfinished and others with bugs. On the hardware side, multiple aspects of the robot 

needed fixes or developments. This included the front arm needing repairs and reworking, the 

back arm needed adjustments made to it, and one of the robot’s wheels required repositioning. If 

the team were given more time, these adjustments and developments may have been made and 

the robot would have been a finished prototype. 

 

7. References  
[1] Robot Scenario. 2020, February 24. www.carmen.osu.edu 

[2] Robot Course CAD. 2020, February 24. www.carmen.osu.edu 

[3] Robot Performance Tests. 2020, February 24. www.carmen.osu.edu 

 

[4] Robot Scenario. 2020, April 6. www.carmen.osu.edu 

 

[5] Pre_R03 – Drivetrain Calculations. 2020, April 6. www.carmen.osu.edu 

 

[6] FEH Motors Graph. 2020, April 6. www.carmen.osu.edu 

 

[7] FEH Robot Store. 2020, April 8. www.feh.osu.edu/store 

 

 

http://www.carmen.osu.edu/
http://www.carmen.osu.edu/
http://www.carmen.osu.edu/
http://www.carmen.osu.edu/
http://www.carmen.osu.edu/
http://www.carmen.osu.edu/
http://www.feh.osu.edu/store


   

 

 

 

 

 

 

 

 

APPENDIX A 

Code 

 

 

This appendix provides the final code. 

 

  



A2 

 

Performance Test 3 Code 

#include <FEHLCD.h> 

#include <FEHUtility.h> 

#include <FEHIO.h> 

#include <FEHServo.h> 

#include <FEHMotor.h> 

#include <LCDColors.h> 

#include <FEHRPS.h> 

#include <math.h> 

/* 

* Left and Right global variables (For Readability) 

*/ 

#define LEFT false 

#define RIGHT true 

#define INCH 1 

 

/* 

* Drivetrain motors 

*/ 

FEHMotor rightMotor(FEHMotor::Motor1, 9.0); 

FEHMotor leftMotor (FEHMotor::Motor0, 9.0); 

 

/* 

* Motor digital encoders 

*/ 

DigitalEncoder right_encoder(FEHIO::P0_0); 

DigitalEncoder left_encoder(FEHIO::P2_7); 

 

/* 

* Line follower sensors 

*/ 

AnalogInputPin rightLine(FEHIO::P1_5); 



A3 

 

AnalogInputPin middleLine(FEHIO::P1_6); 

AnalogInputPin leftLine(FEHIO::P1_7); 

 

/* 

* CDS Cell sensor 

*/ 

AnalogInputPin cdsCell(FEHIO::P1_4); 

 

/* 

* Front bump sensors 

*/ 

DigitalInputPin frontRightBump(FEHIO::P0_3); 

DigitalInputPin frontLeftBump(FEHIO::P0_6); 

 

/* 

* Back bump sensors 

*/ 

DigitalInputPin backRightBump(FEHIO::P0_4); 

DigitalInputPin backLeftBump(FEHIO::P0_5); 

 

/* 

* Servo motor 

*/ 

FEHServo frontArm(FEHServo::Servo0); 

 

/* 

* Hacked servo motor 

*/ 

FEHMotor backArm(FEHMotor::Motor2, 5.0); 

 

/* 

* Scales to adjust the motor speed in order to get the robot to drive straight 

*/ 



A4 

 

float leftMotorScale = 1.003; 

float rightMotorScale = 1.011; 

float leftTurnAdjust = 5; 

float rightTurnAdjust = 5; 

 

/* 

* The average speed we want our robot to go at all times 

*/ 

int normalSpeed = 50; 

int turningSpeed = 25; 

 

/*Multiplier for retracting backArm 

* (retracts a little less than it extends) 

*/ 

float backArmMotorRetractMultiplier = 1.047; 

 

/*Constant for backArm motor power*/ 

int backArmMotorPower = 50; 

 

/* 

* Code to make sure each sensor is working properly 

*/ 

void debugAllSensors() { 

float x, y; 

while (!LCD.Touch(&x, &y)) { 

   LCD.Clear(BLACK); 

         LCD.Write("Right Line Sensor: ");    LCD.WriteLine(rightLine.Value()); 

         LCD.Write("Middle Line Sensor: ");   LCD.WriteLine(middleLine.Value()); 

         LCD.Write("Left Line Sensor: ");     LCD.WriteLine(leftLine.Value()); 

 

         LCD.Write("CDS Cell Value: ");       LCD.WriteLine(cdsCell.Value()); 

 

         LCD.Write("Front Bumper Right: ");   LCD.WriteLine(frontRightBump.Value()); 



A5 

 

         LCD.Write("Front Bumper Left: ");    LCD.WriteLine(frontLeftBump.Value()); 

 

         LCD.Write("Back Bumper Right: ");    LCD.WriteLine(backRightBump.Value()); 

         LCD.Write("Back Bumper Left: ");     LCD.WriteLine(backLeftBump.Value()); 

} 

} 

 

/* 

* Code to move the robot (hopefully) straight forward 

*/ 

void driveForward(int speed = normalSpeed) { 

leftMotor.SetPercent(speed * leftMotorScale); 

rightMotor.SetPercent(speed * rightMotorScale); 

} 

 

/* 

* Code to move the robot (hopefully) straight backwards 

*/ 

void driveBackwards(int speed = normalSpeed) { 

leftMotor.SetPercent(speed * leftMotorScale * -1); 

rightMotor.SetPercent(speed * rightMotorScale * -1); 

} 

 

/* 

* Code to make both motors stop 

*/ 

void stop() { 

leftMotor.Stop(); 

rightMotor.Stop(); 

} 

 

/* 

* Get and store the value of light from the CDS Cell 



A6 

 

*/ 

float getLightValue() { 

 float cdsCellVal = cdsCell.Value(); 

 return cdsCellVal; 

} 

 

/* 

* Determine what the color of the light is and display on the screen 

*/ 

int determineLightValue(float val) { 

 if (val < 0.40) { 

     LCD.Clear(RED); 

     return 333; 

 } else if (1.25 > val && val > 0.75) { 

     LCD.Clear(BLUE); 

     return 999; 

 } else { 

     LCD.Clear(BLUE); 

     LCD.WriteLine("BLUE"); 

     LCD.WriteLine(cdsCell.Value()); 

 } 

 return 0; 

} 

 

/* 

* Turn in some direction (LEFT or RIGHT) for some amount of degrees 

*/ 

void turnFor(float degrees, bool direction, int speed = turningSpeed) 

{ 

if(direction) 

{ 

   degrees += rightTurnAdjust; 

} 



A7 

 

else 

{ 

    degrees += leftTurnAdjust; 

} 

float inches = (degrees / (360.0)) * 25.13; 

float counts = inches * 41.67; 

 

left_encoder.ResetCounts(); 

right_encoder.ResetCounts(); 

 

if (!direction) { 

     rightMotor.SetPercent(speed * rightMotorScale); 

     leftMotor.SetPercent(speed * leftMotorScale * -1); 

} else if (direction) { 

     rightMotor.SetPercent(speed * rightMotorScale * -1); 

     leftMotor.SetPercent(speed * leftMotorScale); 

} else { 

     LCD.WriteLine("I refuse to turn!"); 

} 

 

while((left_encoder.Counts() + right_encoder.Counts()) / 2 < counts); 

stop(); 

} 

 

/* 

* Code to drive forward a specific distance 

*/ 

void driveForwardFor(float inches, int speed = normalSpeed) 

{ 

LCD.Clear(); 

float counts = inches * 41.67; 

left_encoder.ResetCounts(); 

right_encoder.ResetCounts(); 



A8 

 

 

driveForward(speed); 

 

while((left_encoder.Counts() + right_encoder.Counts()) / 2.0 < counts); 

stop(); 

LCD.Write(counts / 41.67);   LCD.WriteLine(" inches"); 

} 

 

/* 

* Code to drive backwards a specific distance 

*/ 

void driveBackwardsFor(float inches, int speed = normalSpeed) 

{ 

float counts = inches * 41.67; 

left_encoder.ResetCounts(); 

right_encoder.ResetCounts(); 

 

driveBackwards(speed); 

 

while((left_encoder.Counts() + right_encoder.Counts()) / 2.0 < counts); 

stop(); 

} 

 

/* 

* Code to extend backArm 

*/ 

void extend(){ 

 backArm.SetPercent(backArmMotorPower); 

 Sleep(2.25); 

 backArm.Stop(); 

} 

 

/* 



A9 

 

* Code to retract backArm 

*/ 

void retract(){ 

 backArm.SetPercent(-backArmMotorPower * backArmMotorRetractMultiplier); 

 Sleep(2.25); 

 backArm.Stop(); 

} 

 

/* 

* Code to make the robot turn towards a specific point 

*/ 

 

void turnTo(float x, float y, int speed = turningSpeed) 

{ 

   double angle; 

   if(x - RPS.X() == 0) 

   { 

       angle = y > RPS.Y() ? 90 : 270; 

   } 

   else if(y - RPS.Y() == 0) 

   { 

       angle = x > RPS.X() ? 0 : 180; 

   } 

   else 

   { 

       angle = tan((y - RPS.Y()) / (x - RPS.X())); 

   } 

 

   double turnAngle = RPS.Heading() - angle; 

 

   turnFor(turnAngle, abs(turnAngle < 180), speed); 

} 

 



A10 

 

/* 

* Code to make the robot drive to a specific point 

*/ 

void driveTo(float x, float y, int speed = normalSpeed, int turnSpeed = turningSpeed) 

{ 

   double xDistance = x - RPS.X(); 

   double yDistance = y - RPS.Y(); 

   double distance = pow(xDistance, 2) + pow(yDistance, 2); 

 

   turnTo(x, y, turnSpeed); 

 

   driveForwardFor(distance, speed); 

} 

 

bool lineFollow(){ 

    { 

        float x,y; 

 

        bool lineDetected = true; 

        bool leftDetected = false; 

        bool centerDetected = false; 

        bool rightDetected = false; 

 

        LCD.Clear(FEHLCD::Black); 

        LCD.SetFontColor(FEHLCD::White); 

 

        /*Sensor test code 

         * .Write("Left: "); LCD.WriteLine(leftLine.Value()); 

            LCD.Write("Center: "); LCD.WriteLine(centerLine.Value()); 

            LCD.Write("Right: "); LCD.WriteLine(rightLine.Value()); 

 

            LCD.Clear(FEHLCD::Black); 

        */ 



A11 

 

 

        //int onOFF = 0; 

    //while(!LCD.Touch(&x, &y)){} 

 

        while(lineDetected) 

        { 

            /*reinitialize detector booleans*/ 

            leftDetected = false; 

            centerDetected = false; 

            rightDetected = false; 

 

            /*if left optosensor detects line, turn true*/ 

            if(leftLine.Value() > 1.5){ 

                leftDetected = true; 

            } 

 

            /*if center optosensor detects line, turn true*/ 

            if(centerLine.Value() > 0.9){ 

                centerDetected = true; 

            } 

 

            /*if right optosensor detects line, turn true*/ 

            if(rightLine.Value() > 1.2){ 

                rightDetected = true; 

            } 

 

            if (leftDetected && centerDetected){ 

                rightMotor.SetPercent(20); 

                leftMotor.SetPercent(30); 

            } 

            else if(rightDetected && centerDetected){ 

                rightMotor.SetPercent(30); 

                leftMotor.SetPercent(20); 



A12 

 

            } 

            else if(centerDetected){ 

                rightMotor.SetPercent(25); 

                leftMotor.SetPercent(25); 

            } 

            else if(leftDetected){ 

                rightMotor.SetPercent(15); 

                leftMotor.SetPercent(50); 

            } 

            else if(rightDetected){ 

                rightMotor.SetPercent(50); 

                leftMotor.SetPercent(15); 

            } 

            else { 

                lineDetected = false; 

            } 

//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------- 

int main(void) 

{ 

  float x,y; 

  LCD.Clear(); 

 

  /* 

   * Calibrate the servo motor 

   * Max: 2410 

   * Min: 500 

   */ 

  frontArm.SetMin(500); 

  frontArm.SetMax(2410); 

 

  /* 

   * Debug mode 

   * 0 is straight up 



A13 

 

   * 90 is parallel to the ground 

   * 180 is straight down 

   */ 

 

  frontArm.SetDegree(30.); 

  debugAllSensors(); 

 

  /* 

   * Wait for light to start 

   */ 

  while(cdsCell.Value() > 1.5); 

 

  * 

   * Drive forward a bit, turn to the left 90 degrees 

   */ 

  driveForwardFor(4 * INCH); 

  turnFor(90, LEFT); 

 

  /* 

   * Drive forward to center of ramp, turn right 90 degrees 

   */ 

  driveForwardFor(7.25 * INCH); 

  turnFor(90, RIGHT); 

 

  /* 

   * Drive up the ramp 

   */ 

  driveForwardFor(12 * INCH); 

  driveForwardFor(12 * INCH, 90); 

  driveForwardFor(10 * INCH); 

  /* 

   * Drive to the stove 

   */ 



A14 

 

  /* 

   * Flip the burger patty 

   */ 

  /* 

   * Drive to the beginning of the ice cream line 

   */ 

  /* 

   * Follow the line to the lever 

   */ 

  /* 

   * Flip the lever 

   */  

  return 0; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A15 

 

Table A1: This is where the table mentioning all the code functions with their descriptions, returns, parameters, and 

names will go. 

Function Name Parameters Returns Description 

Function 

Creation was 

Complete or 
Started 

turnFor 

float 

degrees 

bool 
direction            

int speed 

void 

Have the robot turn in the 

requested direction for the 
specified amount 

Started 

driveBackwards int speed void Have the robot drive forward Complete 

driveForward int speed void Have the robot drive backwards Complete 

stop  void Stop the robot's wheels Complete 

driveForwardFor 
float inches          

int speed 
void 

Have the robot drive forward for 
the specified amount 

Started 

driveBackwardsFor 
float inches          

int speed 
void 

Have the robot drive backwards 
for the specified amount 

Started 

getLightValue  float Get a value from the CDS cell Complete 

determineLightValue float val int 

Take the CDS cell's value and 
determine of the color is red or 

blue and display the color on the 

proteus screen 

Complete 

extend  void Move the back arm out Complete 

retract  void Move the back arm back in Complete 

debugAllSensors  void 

Displayed the current output 

from each of the sensors onto 
the proteus screen to aid the 

team in determining if all 

sensors were working properly 

Complete 

displayCoordiantes  void 

Displayed the coordinates on the 

proteus screen that the RPS sent 

to the robot 

Complete 

turnTo 
float x            
float y                

int speed 

void 

Would allow the robot to read 
RPS and turn the front of the 

robot in a certain direction based 
on the RPS coordinates 

Started 

driveTo 

float x            

float y                

int speed                  
int 

tunrSpeed 

void 

Would allow the robot to read 

RPS and turn in the needed 

direction, followed by driving 
forward or backward based on 

the RPS coordinates 

Started 

followLine int speed void 

Allows the robot to follow a line 

in the direction the robot is 

currently facing 

Started 

getIceCreamLever  int 

Returns the value the robot 

requires to determine which ice 

cream lever the robot should flip 

Not Started 

 

 



A16 

 

 

Figure A1: Flowchart depicting the choices and code overview the robot will do for the decided run path. 



A17 

 

 

Figure A2: Continuation of flowchart from Figure A1 on the last page. 

 



   

 

 

 

 

 

 

 

APPENDIX B 

Decision Matrices 

 

 

This appendix provides the decision matrices. 

 

 

  



B2 

 

Table B1: Decision Matrix 

 



B3 

 

Table B1 (continued): Decision Matrix 



   

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

Robot Pictures and Diagrams 

 

 

This appendix provides the pictures of the physical mock-

up. 

  



C2 

 

 

Figure C1: Three Preliminary Robot Designs. 

 



C3 

 

 

Figure C2: Robot Mockup Front View. 

 

 

Figure C3: Side View of Final Robot Design. 

 



C4 

 

 

Figure C4: Electrical diagram of proteus ports and what sensors/motors were plugged into which ports.



   

 

 

 

 

 

 

 

 

 

APPENDIX D 

Budget and Time Sheets 

 

 

This appendix provides tables showing the time spent on 

various project areas and the budget breakdown. 

  



D2 

 

Table D1: A list of items used or bought for the robot, the quantity bought, and the total cost of all parts bought. 

Item Quantity Cost 

2 ft Length of Solder (Lead Based) 1 1.00 

Red Filter 1 0.10 

Motor Wire 2-Conductor 18AWG (1 ft) 2 0.40 

Terminal Block for DC Motors 3 3.00 

10 Pack #8 Screws (.38"), Nuts, Washers 2 0.40 

Heat Shrink Tubing for Motor Wire (1 in) 14 0.28 

Male Header Strip (36 Pin) 1 0.60 

Ribbon Cable (1 ft) 1 0.50 

3D Printed Chassis Mount for IGWAN Motor 2 5.00 

DuBro 250T 2.5" Wheel 2 5.20 

DuBro Wheel Adapter for IGWAN Shaft- For 2.5" Wheel 2 2.00 

IG-22 IGWAN Motor 2 50.00 

3D Printed Slider 2 4.60 

4 Pack, 16mm Screws w/ Washers, M2x16 2 0.10 

6 Pack of #6 Screws (1.5"), Nuts, Washers 2 0.40 

Optosensor (100 Ohm and 10 kOhm Resistors) 2 1.54 

Line Following Circuit Board (Optosensors Not Included) 1 1.00 

Microswitch, Roller Blade (Medium) 3 3.60 

Chassis (3 * 1/4 Inch Layers of MDF) 1 16.54 

Epoxy Packet w/ Stick and Cup 3 2.64 

8.5" x 11" Cardboard Sheet 3 0.12 

1x1" Angle Bracket w/ 2x2 Hole 4 4.00 

6.5" Axle Rod 1 1.24 

5.5 x 0.5" Double Angle Strip w/ 1 x 11 x 1 Hole 1 1.92 

2.5" Strip w/ 5 Hole 2 1.20 

5.5" Strip w/ 11 Hole 3 2.67 

Futaba Servo Motor w/ Hardware 2 20.00 

50 Teeth Gear (Includes One 069S) 1 9.01 

6.5" Rack Strip 1 3.44 

Double Angle Strip 4.5" x 0.5" 1x9x1 Hole 1 1.41 

3/32" dia. Shrink Tubing 1 0.20 

 Total 
Cost 

144.11 

 



D3 

 

 
 

 
 
 
 
 
 
 
 
 

160.00

93.20

67.82 66.82 66.72 66.68

34.23
24.01 22.27 22.07 21.07 20.19 19.31 17.90 17.01 16.97 16.77 15.89

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

Start After
Order 1

After
Order 2

After
Order 3

After
Order 4

After
Order 5

After
Order 6

After
Order 7

After
Order 8

After
Order 9

After
Order

10

After
Order

11

After
Order

12

After
Order

13

After
Order

14

After
Order

15

After
Order

16

After
Order

17

B
u

d
ge

t 
($

)

Orders

Budget Remaining Over Time

Table D2: Table that tracks the cost of each order, how much went into each category, and the effect each order had on the budget over time. 

Figure D1: Graph depicting the trend in budget over time. The order 1, 2, 6, and 7 were the teams major orders, consisting of most of the parts 

needed for the robot. All other orders were made in order to get extra parts or a part that was discovered to have been needed that was not 

ordered earlier. 



D4 

 

Table D3: The time sheet tracking time spent by Alek Srode. Lists date, item (Work Category), start time, end time, 

and time spent in minutes. 

Date Item Start Time End Time 
Time 
Spent 
(min) 

2020-02-05 Documentation 11:35 AM 12:25 PM 50 

2020-02-06 Project Management 7:20 PM 9:20 PM 120 

2020-02-07 CAD 9:00 AM 9:30 AM 30 

2020-02-07 CAD 9:30 AM 10:05 AM 35 

2020-02-07 Coding 10:45 AM 12:25 PM 100 

2020-02-08 CAD 2:10 PM 4:20 PM 130 

2020-02-08 Building/Construction 5:05 PM 6:15 PM 70 

2020-02-10 Project Management 9:35 AM 10:05 AM 30 

2020-02-10 Project Management 10:15 AM 12:20 AM 125 

2020-02-11 Project Management 8:30 PM 9:30 PM 60 

2020-02-12 Documentation 9:00 AM 10:15 AM 135 

2020-02-13 Project Management 5:30 PM 5:55 PM 25 

2020-02-14 CAD 9:30 AM 10:05 AM 35 

2020-02-14 Coding 10:15 AM 12:20 PM 125 

2020-02-14 CAD 3:00 PM 3:45 PM 45 

2020-02-17 Project Management 9:30 AM 10:15 AM 45 

2020-02-17 Project Management 10:20 AM 12:20 PM 120 

2020-02-17 Building/Construction 1:05 PM 1:45 PM 45 

2020-02-18 Coding 4:45 PM 5:30 PM 45 

2020-02-18 Other 5:30 PM 8:10 PM 160 

2020-02-19 Documentation 9:00 AM 10:05 AM 65 

2020-02-19 Building/Construction 10:15 AM 12:25 PM 130 

2020-02-19 Building/Construction 8:30 PM 9:00 PM 30 

2020-02-20 Other 2:10 PM 4:50 PM 160 

2020-02-20 Other 6:00 PM 9:00 PM 180 

2020-02-21 Testing 10:20 AM 12:20 PM 120 

2020-02-21 Building/Construction 3:30 PM 4:00 PM 30 

2020-02-22 Documentation 4:45 PM 5:20 PM 35 



D5 

 

2020-02-24 Documentation 9:00 AM 10:20 AM 80 

2020-02-24 Building/Construction 10:20 AM 12:20 PM 120 

2020-02-24 Building/Construction 2:50 PM 5:20 PM 150 

2020-02-24 Coding 6:00 PM 8:50 PM 170 

2020-02-25 Testing 4:15 PM 6:40 PM 145 

2020-02-26 Documentation 9:05 AM 10:20 AM 75 

2020-02-26 Building/Construction 10:20 AM 12:25 PM 125 

2020-02-27 Testing 5:30 PM 9:00 PM 210 

2020-02-28 Documentation 9:30 AM 10:10 AM 40 

2020-02-28 Testing 10:20 AM 12:20 AM 120 

2020-03-02 Project Management 9:00 AM 10:15 AM 75 

2020-03-02 Other 10:20 AM 12:25 PM 145 

2020-03-02 Testing 7:00 PM 9:00 PM 120 

2020-03-03 Coding 4:20 PM 9:00 PM 280 

2020-03-04 Coding 10:20 AM 12:20 AM 120 

2020-03-04 Other 5:20 PM 9:00 PM 220 

2020-03-05 Testing 2:10 PM 6:10 PM 240 

2020-03-25 Documentation 1:00 PM 5:30 PM 270 

2020-03-27 Documentation 1:15 PM 3:15 PM 120 

2020-04-06 Documentation 2:30 PM 8:00 PM 330 

2020-04-06 Documentation 8:45 PM 10:30 PM 105 

2020-04-08 Documentation 8:15 AM 1:00 PM 285 

2020-04-08 Documentation 3:45 PM 7:00 PM 195 

2020-04-08 Documentation 10:30 PM 11:30 PM 60 

2020-04-10 CAD 11:15 PM 12:00 AM 45 

2020-04-12 Project Management 7:50 PM 8:20 PM 30 

2020-04-12 Documentation 8:30 PM 8:45 PM 15 

2020-04-13 Project Management 5:30 PM 6:00 PM 30 

2020-04-14 Documentation 4:00 PM 7:00 PM 180 

2020-04-15 Documentation 5:15 PM 6:30 PM 75 

2020-04-16 Documentation 6:00 PM 7:30 PM 90 

2020-04-17 Documentation 1:00 PM 2:45 PM 105 

2020-04-17 Documentation 3:15 PM 4:00 PM 45 



D6 

 

Table D4: The time sheet tracking time spent by Keith Kriston. Lists date, item (Work Category), start time, end 

time, and time spent in minutes. 

Date Item 
Start 
Time 

End 
Time 

Time Spent 
(min) 

2/5/2020 Documentation 11:30 12:30 60 

2/6/2020 Project Management 7:30 9:30 120 

2/7/2020 CAD 9:30 10:00 30 

2/8/2020 Building/Construction 5:00 6:15 75 

2/10/2020 Project Management 9:30 12:30 180 

2/11/2020 Project Management 8:30 9:30 60 

2/12/2020 Documentation 9:00 10:15 75 

2/13/2020 Project Management 5:30 6:00 30 

2/14/2020 Project Management 9:30 10:00 30 

2/14/2020 Coding 10:00 12:30 150 

2/17/2020 Project Management 9:30 12:30 120 

2/18/2020 Coding 4:00 5:30 90 

2/18/2020 Testing 5:30 8:00 150 

2/19/2020 Documentation 9:00 10:00 60 

2/19/2020 Building/Construction 10:00 12:30 150 

2/20/2020 Testing 6:00 9:00 180 

2/21/2020 Testing 10:00 12:30 150 

2/22/2020 Documentation 5:00 6:00 60 

2/24/2020 Building/Construction 10:15 12:00 105 

2/24/2020 Testing 7:00 9:00 120 

2/25/2020 Testing 5:30 7:30 120 

2/26/2020 Building/Construction 9:45 12:25 150 

2/27/2020 Testing 5:45 9:00 255 

2/28/2020 Testing 9:45 12:30 135 

3/2/2020 Project Management 9:45 12:30 135 

3/2/2020 Coding 7:00 8:30 150 

3/4/2020 Coding 10:15 12:30 135 

3/4/2020 Testing 5:15 6:00 45 

3/5/2020 Testing 5:45 8:45 180 

3/25/2020 Documentation 1:00 3:00 120 



D7 

 

3/27/2020 Documentation 1:15 3:15 120 

4/8/2020 Documentation 11:30 12:30 60 

4/8/2020 Documentation 1:00 2:15 75 

4/8/2020 Documentation 5:30 6:00 30 

4/8/2020 Documentation 6:15 7:15 60 

4/10/2020 CAD 11:45 12:30 45 

4/10/2020 CAD 12:45 2:45 120 

4/10/2020 CAD 5:15 5:45 30 

4/10/2020 CAD 8:00 12:00 120 

4/13/2020 Documentation 5:30 6:00 30 

4/15/2020 Documentation 12:45 1:15 30 

4/16/2020 Documentation 5:00 5:30 30 

4/16/2020 Documentation 5:45 6:30 45 

4/16/2020 Documentation 7:00 9:00 120 

4/17/2020 Other 1:00 3:30 150 

4/20/2020 Documentation 6:45 7:30 45 

4/20/2020 Project Management 8:15 9:15 60 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



D8 

 

Table D5: The time sheet tracking time spent by Thomas Krisak. Lists date, item (Work Category), start time, end 

time, and time spent in hours and minutes. 

Date Item Start Time End Time 
Time Spent 

(hh:mm) 

2020-02-05 Documentation 11:35 AM 12:25 PM 00:50 

2020-02-06 Project Management 7:20 PM 9:20 PM 02:00 

2020-02-06 Building/Construction 9:20 PM 10:20 PM 01:00 

2020-02-07 CAD 9:30 AM 10:05 AM 00:35 

2020-02-08 Building/Construction 5:05 PM 6:15 PM 01:10 

2020-02-10 Project Management 9:35 AM 10:05 AM 00:30 

2020-02-10 Project Management 10:15 AM 12:20 PM 02:05 

2020-02-11 Project Management 8:30 PM 9:30 PM 01:00 

2020-02-12 Documentation 9:00 AM 10:15 AM 01:15 

2020-02-12 Project Management 8:30 PM 9:30 PM 01:00 

2020-02-14 Project Management 10:15 AM 12:20 PM 02:05 

2020-02-14 CAD 3:00 PM 3:45 PM 00:45 

2020-02-17 Project Management 9:45 AM 10:15 AM 00:30 

2020-02-17 Project Management 10:20 AM 12:20 PM 02:00 

2020-02-18 Other 5:30 PM 8:10 PM 02:40 

2020-02-18 Building/Construction 7:00 PM 8:10 PM 01:10 

2020-02-19 Documentation 9:35 AM 10:05 AM 00:30 

2020-02-19 Building/Construction 10:15 AM 12:25 PM 02:10 

2020-02-19 Building/Construction 8:30 PM 9:00 PM 00:30 

2020-02-20 Project Management 4:00 PM 5:00 PM 01:00 

2020-02-20 Testing 7:00 PM 9:00 PM 02:00 

2020-02-21 Testing 10:20 AM 12:25 PM 02:05 

2020-02-24 Documentation 9:00 AM 10:20 AM 01:20 

2020-02-24 Testing 7:00 PM 9:00 PM 02:00 

2020-02-25 Building/Construction 6:00 PM 6:40 PM 00:40 

2020-02-26 Documentation 9:05 AM 10:20 AM 01:15 

2020-02-26 Building/Construction 10:20 AM 12:25 PM 02:05 

2020-02-27 Testing 5:30 PM 9:00 PM 03:30 

2020-02-28 Documentation 9:30 AM 10:10 AM 00:40 

2020-02-28 Testing 10:20 AM 12:20 PM 02:00 



D9 

 

2020-03-02 Testing 9:00 AM 10:20 AM 01:20 

2020-03-02 Other 10:20 AM 12:25 PM 02:05 

2020-03-02 Testing 7:00 PM 9:00 PM 02:00 

2020-03-04 Other 10:20 AM 12:25 PM 02:05 

2020-03-05 Testing 6:00 PM 8:30 PM 02:30 

2020-03-25 Documentation 1:00 PM 4:00 PM 03:00 

2020-03-25 Project Management 1:00 PM 9:20 PM 08:20 

2020-03-28 Project Management 2:00 PM 6:10 PM 04:10 

2020-04-06 Documentation 3:00 PM 8:00 PM 05:00 

2020-04-08 Project Management 3:00 PM 5:00 PM 02:00 

2020-04-09 CAD 7:00 PM 9:40 PM 02:40 

2020-04-10 CAD 9:00 PM 11:30 PM 02:30 

2020-04-16 Project Management 4:00 PM 5:00 PM 01:00 

2020-04-20 Project Management 6:00 PM 7:00 PM 01:00 

2020-04-20 Documentation 8:30 PM 10:00 PM 01:30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



D10 

 

Table D6: The time sheet tracking time spent by Kevin Wang. Lists date, item (Work Category), start time, end 

time, and time spent in minutes. 

Date Item Start Time End Time Time Spent (min) 

2020-02-05 Documentation 11:35 AM 12:25 PM 50 min 

2020-02-06 Project Management 7:20 PM 9:20 PM 120 min 

2020-02-07 CAD 9:30 AM 10:05 AM 35 min 

2020-02-07 Coding 10:45 AM 12:25 PM 100 min 

2020-02-08 Building/Construction 5:05 PM 6:15 PM 70 min 

2020-02-10 Project Management 9:35 AM 10:05 AM 30 min 

2020-02-10 Project Management 10:15 AM 12:20 PM 125 min 

2020-02-11 Project Management 8:30 PM 9:30 PM 60 min 

2020-02-12 Documentation 9:00 AM 10:15 AM 75 min 

2020-02-12 CAD 4:30 PM 5:30 PM 60 min 

2020-02-13 Project Management 5:30 PM 5:55 PM 25 min 

2020-02-14 Project Management 9:30 AM 10:05 AM 35 min 

2020-02-14 Coding 10:15 AM 12:20 PM 125 min 

2020-02-17 Project Management 9:30 AM 10:15 AM 45 min 

2020-02-17 Project Management 10:20 AM 12:20 PM 120 min 

2020-02-18 Documentation 4:00 PM 5:30 PM 90 min 

2020-02-18 Building/Construction 5:30 PM 8:10 PM 160 min 

2020-02-19 Documentation 9:00 AM 10:05 AM 65 min 

2020-02-19 Building/Construction 10:15 AM 12:25 PM 130 min 

2020-02-19 Building/Construction 8:30 PM 9:00 PM 30 min 

2020-02-20 Testing 4:00 PM 5:00 PM 60 min 

2020-02-20 Testing 6:00 PM 9:00 PM 180 min 

2020-02-21 Testing 10:20 AM 12:25 PM 125 min 

2020-02-22 Documentation 5:00 PM 6:00 PM 60 min 

2020-02-24 Testing 7:00 PM 9:00 PM 120 min 

2020-02-25 Coding 3:45 PM 5:00 PM 75 min 

2020-02-25 Documentation 5:00 PM 6:00 PM 60 min 

2020-02-25 Coding 6:00 PM 7:15 PM 75 min 

2020-02-26 Building/Construction 10:20 AM 11:20 AM 60 min 

2020-02-26 Other 11:20 AM 12:25 PM 65 min 



D11 

 

2020-02-28 Testing 10:20 AM 12:25 PM 125 min 

2020-03-02 Coding 10:20 AM 12:25 PM 125 min 

2020-03-02 Testing 7:20 PM 9:00 PM 100 min 

2020-03-02 Documentation 9:10 PM 9:30 PM 20 min 

2020-03-02 Documentation 11:00 PM 12:00 AM 60 min 

2020-03-03 Testing 4:00 PM 5:00 PM 60 min 

2020-03-03 Testing 5:00 PM 9:00 PM 240 min 

2020-03-04 Testing 10:20 AM 12:25 PM 125 min 

2020-03-22 Documentation 9:00 PM 10:00 PM 60 min 

2020-03-25 Documentation 10:00 AM 11:45 AM 105 min 

2020-04-01 Other 4:00 PM 6:00 PM 120 min 

2020-04-02 Other 12:45 PM 1:10 PM 25 min 

2020-04-03 Other 3:00 PM 5:00 PM 120 min 

2020-04-08 Documentation 3:00 PM 5:30 PM 150 min 

2020-04-09 CAD 3:30 PM 4:45 PM 75 min 

2020-04-09 Documentation 4:45 PM 6:30 PM 105 min 

2020-04-10 CAD 11:00 PM 12:00 AM 60 min 

2020-04-14 Documentation 4:00 PM 5:00 PM 60 min 

2020-04-15 Other 10:30 AM 11:45 AM 75 min 

2020-04-15 Documentation 4:00 PM 4:30 PM 30 min 

2020-04-17 Documentation 1:00 PM 2:30 PM 90 min 

2020-04-17 Documentation 3:15 PM 4:00 PM 45 min 

2020-04-19 Documentation 4:00 PM 6:30 PM 150 min 



   

 

 

 

 
 

 

 

 

 

APPENDIX E 

Testing Logs 

 

 

This appendix provides the testing logs 

  



E2 

 

Table E1: Complete Testing Log (Pages E2 – E10) 

When: 2/20           Where: Hitchcock           Why: PT1 

Test 

No. 

No. of 

Runs 

Reason for 

test 

Action / changes made prior Observations Changes to 

be made 

Good 

Results? 

Members 

Present 

1 1 PT1 get to 

the jukebox 

light 

made robot and made code for PT1 Pointed at jukebox light. Right motor 

malfunctioned due to exposed unconnected wire 

fix that  Kevin, 

Alek, 

Keith, 

Thomas 

2 1 - checked connections Left wheel drove a little faster, did not wait for 

light to start, wheels were slightly wobbly, slider 

got stuck on light for jukebox. 

improve 

driving code 

 Kevin, 

Alek, 

Keith, 

Thomas 

3 2 - debugged movement POINTED AT RECEIPT BOX Run 1: stuck on 

boot screen. Run 2: successfully waited for light, 

drove relatively straight, did not stop due to 

unplugged encoder, successfully went up ramp. 

plug stuff 

back in 

 Kevin, 

Alek, 

Keith, 

Thomas 

4 1 - check wire connections Right wheel fell off. turned full 180 instead of 90 

when backwards instead of forwards when going 

to receipt 

fix code  Kevin, 

Alek, 

Keith, 

Thomas 

5 1 - halved the turning code, changed 

movement code from driveForward() 

to driveForwardFor(). 

Correctly turned 90 degrees, overshot the light work on light 

sensing and 

movement 

 Kevin, 

Alek, 

Keith, 

Thomas 

6 1 - Decreased initial driveForwardFor() 

distance 

Gets very close to light, but does not detect the 

jukebox light. Slightly crooked to the left. 

Improve 

movement 

code some 

more 

 Kevin, 

Alek, 

Keith, 

Thomas 

7 1 - Decreased 14 inches to 11.5 initial, 

decreased right motor power 

Overshot slightly more code 

improvement 

for 

movement 

 Kevin, 

Alek, 

Keith, 

Thomas 

8 1 - Small movement tweak Crooked left when moving forward, after hitting 

wall (missed light) backed up successfully instead 

of continuously running into the wall. 

Work on 

movement 

 Kevin, 

Alek, 

Keith, 

Thomas 

9 1 - Distance changed from 10 to 7, right 

motor scale 1, left motor scale 1.01 

Turn undershot due to weaker right motor, 

overshot the light. 

work on 

turning and 

movement 

 Kevin, 

Alek, 

Keith, 

Thomas 

10 1 - tweaking Got close to the light, but did not reach it more 

tweaking 

 Kevin, 

Alek, 

Keith, 

Thomas 

11 1 - more tweaking Almost made it to the ramp tweak  Kevin, 

Alek, 

Keith, 



E3 

 

Thomas 

12 1 - tweaking Did not reach jukebox light, after turning toward it, 

did not make it. wheel fell off going up ramp. 

tweak  Kevin, 

Alek, 

Keith, 

Thomas 

13 1 - tweaking Short of light, backed up a bit too far when making 

way to ramp 

movement 

tweak 

 Kevin, 

Alek, 

Keith, 

Thomas 

14 1 - tweak Detected A light, but hit the wrong button. (hit 

blue when light was red) Made it to the ramp, but 

did not make it all the way up. While going up the 

ramp, it was a little crooked to the left. 

changed to 

get closer to 

the jukebox 

light, 

(originally 

just barely 

detects light 

then stops) 

Detected 

a light. 

Hit a 

button 

Kevin, 

Alek, 

Keith, 

Thomas 

15 1 PT1 

Improve 

consistency 

increased movement toward jukebox 

light before turning toward jukebox. 

Went without detecting the light at the start. Got 

stuck hitting the jukebox button. Going up ramp, 

went crooked to the left. ground up against the left 

wall while going up the ramp. 

movement 

tweaks 

 Kevin, 

Alek, 

Keith, 

Thomas 

16 1 - tweaks Still gets tuck on jukebox button (did not reach 

limit count to move back, but stops after hitting the 

button. It essentially froze). Still crooked going up 

ramp, did not make it back down (crooked to the 

left the entire time). 

straighten 

movement 

up ramp 

 Kevin, 

Alek, 

Keith, 

Thomas 

17 1 - Increased left motor power in 

general 

Does not properly detect the blue jukebox light, 

but properly detects the red light. Accidentally hit 

both buttons but did not completely press either. 

Crooked up ramp still.  

Improve 

ramp 

movement 

and jukebox 

light 

detection 

 Kevin, 

Alek, 

Keith, 

Thomas 

18 1 - Increased motor power of both 

motors when going up the ramp. 

Changed light detection code so that 

the robot defaults to hitting the blue 

button if the red light is not detected 

(will hit blue button unless red is 

detected). Added cow catcher for 

improved button actuation. 

Red button detected, hit red button, went up ramp 

fast (and way too far), went back slow, undershot 

ramp, only slightly crooked, bumped into the right 

wall. 

decrease 

distance 

going up 

ramp, 

increase 

distance 

going down 

ramp 

 Kevin, 

Alek, 

Keith, 

Thomas 

19 2 - decreased distance up ramp, 

increased distance down ramp 

Run 1: red light registered blue, got stuck hitting 

button, got too close to right wall going up ramp 

after hitting the blue button. Run 2: red light, 

properly hit the red button, went up the ramp, and 

back down successfully 

Nothing Run 2 

got a 

perfect 

Kevin, 

Alek, 

Keith, 

Thomas 

20 1 - nothing OFFICIAL RUN 1: Red light, tru positive, proper 

button hit, but got stuck on the button. (15 points) 

Adjust 

movement 

and get robot 

unstuck from 

jukebox 

button 

 Kevin, 

Alek, 

Keith, 

Thomas 



E4 

 

21 2 - Adjusted movement to ramp after 

blue button press, implemented 

button press kill timer for all three 

button guess conditions, red, blue, 

default 

Run 1:Blue, true positive (default), wheel fell off 

backing up toward ramp. Run 2: Red, true positive, 

hit button, not a true press, continued on. Up ramp, 

down ramp, slightly crooked right, wheel fell off 

on way down. 

Fix rubber 

wheel to 

hubcap 

 Kevin, 

Alek, 

Keith, 

Thomas 

22 2 - Hot glued rubber part of right wheel 

to hubcap 

Run 1: Everything Smooth. Run 2: OFFICIAL 

RUN 2: Everything smooth. (23 points out of 20). 

  Kevin, 

Alek, 

Keith, 

Thomas 

        

When: 2/24           Where: Hitchcock           Why: PT2 

Test 

No. 

No. of 

Runs 

Reason for 

test 

Action / changes made prior Observations Changes to 

be made 

Good 

Results? 

Members 

Present 

1 2 See if we 

can shorten 

travel time 

Test PT1 Code at double speed (all) 

(25% to 50%) 

turns over shot, left wheel fell off, straight driving 

good. 

Return 

turning 

speed to 

normal (50% 

back to 

25%), hot 

glued rubber 

part of left 

wheel to hub 

cap 

Straight 

drive @ 

50% 

seems to 

drive an 

accurate 

distance 

Kevin, 

Keith 

2 4 Improve 

turning 

accuracy 

Return turning speed to 25% Turning is accurate, wheels stayed on, drove 

straight, jukebox light detected, proper button was 

pressed, went up ramp successfully, went too far 

and hit patty flip, drove down ramp too fast, 

flipped over 

None Accurate 

turns, 

accurate 

and 

faster 

driving. 

Kevin, 

Keith 

3 1 Get to 

bottom of 

ramp 

Using provisional PT2 code Did not actually use PT2 code Use PT2 

code 

 Kevin, 

Keith 

4 2 - Actually use PT2 code Drove too far, apparently turns slightly more than 

90 degrees. 

Print out 

some lines to 

determine 

why the 

robot 

overshoots 

driving 

none Kevin, 

Keith 

        

When: 2/25           Where: Hitchcock           Why: PT2 

Test 

No. 

No. of 

Runs 

Reason for 

test 

Action / changes made prior Observations Changes to 

be made 

Good 

Results? 

Members 

Present 

1 1 Left 

Encoder 

has not 

been 

working 

Test code created that prints counts 

recorded by left encoder 

Does not print count value, Realized Left Encoder 

was plugged into a faulty bank (P3_7) 

Moved left 

motor 

encoder to 

bank P2_7 

 Kevin, 

Keith 



E5 

 

2 1 - Moved Left encoder to P2_7 Worked fine None Driving 

function 

work 

now! 

Kevin, 

Keith 

3 1 Testing 

extension 

and 

retraction 

of back arm 

Created void methods extend() and 

retract() for the back arm. 

back arm slides into place and is able to interact 

with ticket slider. Placement is a little tight 

Now test 

robot 

capability to 

move the 

ticket by 

itself 

 Kevin, 

Keith 

4 1 - Added to code, included basic drive 

function 

Chassis held up when pushing ticket. Did not test 

reaction when pushed all the way through 

Put back arm 

methods into 

PT2 Code, 

add precises 

movement 

for ticket 

push in PT2 

Code 

Chassis 

holds up 

when 

pushing 

the ticket 

a little 

Kevin, 

Keith 

        

When: 2/26           Where: Hitchcock           Why: PT2 

Test 

No. 

No. of 

Runs 

Reason for 

test 

Action / changes made prior Observations Changes to 

be made 

Good 

Results? 

Members 

Present 

1 2 Test front 

arm, test all 

code 

constructed front arm, included front 

arm code, secured arm 

Arms seem stable and in working condition. Turns 

were half, undershot 

Debug 

turning 

Arms 

work 

All 

2 1 Test all 

code PT2 

Doubled turning values ( Turning works but did not make it far enough up 

ramp 

Debug 

driving 

straight 

 All 

3 1 - Increased forward speed going up 

ramp 

   All 

4 1 - Increased distance run before 

dropping off tray 

Tray almost went into the sink, fell off on the side 

closer to ramp 

Small 

adjustments 

 All 

5 1 -  Tray went into the sink, the robot missed the 

receipt 

Improve 

driving 

Tray 

went 

into sink 

All 

        

When: 2/27           Where: Hitchcock           Why: PT2 

Test 

No. 

No. of 

Runs 

Reason for 

test 

Action / changes made prior Observations Changes to 

be made 

Good 

Results? 

Members 

Present 

1 2 sink & 

receipt line 

up 

 tray in sink, back left wheel caught on ticket 

holder, back arm malfunction 

increase 

distance up 

ramp 

tray is in All 

2 1 - 9 in to 10 in past ramp No longer caught on receipt holder, Undershot to 

receipt though. Too far away, and not far enough 

right. 

Tweak 

Values 

 All 



E6 

 

3 2 - back up to receipt 11 in to 13 in; 

Drive from wall (from being flush) 1 

in so that the back arm aligns with 

receipt 

hit wall next to sink. closer to receipt now. Still ~2 

inches in front of receipt 

Further 

tweak 

 All 

4 1 - Back up to wall further ( to flush) 

13in to 15in. Drive forward from 

wall, changed from 1in to 1.5in 

backing up to wall, did not get flush. back arm did 

not extend fully because of colliding with receipt. 

thus retracted too far. 

  All 

5 2 - Back up to wall changed 15in to 

17in; distance pulling away from 

wall after flush changed 1.5in to 

1.125in; 

Backed up flush to wall. Drove forward from wall 

far enough. Back Arm did not extend far enough. 

Adjust Back 

arm, Adjust 

distance 

from wall 

next to 

receipt. 

Backed 

up flush 

to wall. 

All 

6 1 - distance pulling away from wall 

after flush changed 1.125in to 1.1in 

did not go flush with wall. Went into receipt holder 

(overshot turn) 

change 

turning and 

dstiance to 

receipt 

 All 

7 2 - Charged Proteus motors were stronger, did not get close enough to 

receipt. 

tweak 

distances 

 All 

8 3 - Distance backing up to ramp (on 

way to receipt) from 1in to 2in 

run1:backed up too far to receipt. ran into receipt 

holder; Run2: backed up flush to receipt wall. back 

arm did not extend far enough; Run3: went into 

receipt holder 

Go a little 

further after 

going up 

ramp 

 All 

9 2 - Going a little further after going up 

ramp changing from 10in to 10.5in 

not close enough to receipt. Back arm did not 

reach receipt. 

back up 

closer to the 

receipt slider 

 All 

10 2 - 1.5 in to 3.5in backing up to receipt 

holder from tray drop 

broke back arm holding contraption due to outside 

interference 

fix back arm 

holding 

contraption 

 All 

11 2 - fixed back arm holding contraption not close enough to receipt slider. Back Arm was 

not 

increase 

back up to 

receipt 

 All 

12 1 - drive back to receipt change from 

3.5 to 4in 

backed up too much, ran into receipt holder tweak  All 

13 1 - Drive back to receipt change from 

4in to 3.75in 

Did not back up enough tweak  All 

        

When: 2/28           Where: Hitchcock           Why: PT2 

Test 

No. 

No. of 

Runs 

Reason for 

test 

Action / changes made prior Observations Changes to 

be made 

Good 

Results? 

Members 

Present 

1 2 Sink and 

receipt line 

up (PT2) 

fully charged proteus Left motor too strong, going up ramp, goes slightly 

to the right. Backing up to the receipt holder. Runs 

into the receipt holder. 

Adjust 

turning 

 Kevin, 

Keith 

2  -  going up ramp, ran into receipt holder. messed 

everything else up 

decrease 

turning 

 Kevin, 

Keith 



E7 

 

3 2 -  tray did not make it into sink, going crooked to the 

right up the ramp. 

  Kevin, 

Keith 

4 1 - hot glued back arm gear to motor. 

changed going up ramp 75% speed 

to 90% speed. 

Accurate tray deposit. Still too far from receipt. 

back arm worked properly but arm fell out of 

socket. 

Increase 

backing up 

distance to 

receipt. 

 Kevin, 

Keith 

5 1 - Backing up to receipt, changed from 

3.75in to 3.875in. Back arm 

construction overhaul (reglued parts) 

more sturdy, can extend farther now) 

One encoder was plugged in incorrectly. We 

changed it accordingly. Second run, the back arm 

hit the front of the receipt. did not position into the 

gap of receipt and holder. closer now. 

properly 

plug stuff in 

getting 

closer to 

sliding 

receipt. 

Kevin, 

Keith 

6 1 - Plugged encoders in correctly Arm fell out due to extending too far. Was not 

close enough to receipt to push it. Seemed that the 

motors undershot many of the distances. Did not 

bump into wall of sink like usual. Did not get close 

to the receipt like that last test 

   

7 1 - extend and retract for 2.25sec instead 

of 2.0 sec 

ran too far now?? hit sink wall. But did not get 

close enough to receipt slider 

   

8 2 - Improved back arm seemingly inconsistent    

9 1 - Backing up 4in instead of 3.875in to 

the receipt. Sturdified the back arm 

Official: Seemingly .5in away from receipt Increase arm 

length or 

something 

 All 

10 1 - added stylus onto arm to lengthen Official: Arm fit into gap, moved receipt. not all 

the way. Almost, very very close. 

Increase 

receipt slide 

distance 

jussst a little 

 All 

11 1 - Lengthened stylus a little more Official 3: arm got wobbly, did not finish sliding 

receipt 

sturdify arm  All 

12 1 - Sturdified stylus Official 4: fully slid receipt but got stuck turning 

toward hot plate 

shorten 

stylus a 

litttttle bit 

Receipt 

fully slid 

All 

13 1 - retracted stylus juuust a little bit Official 5: Full 23 points  Full 

Points, 

Made it 

to the 

hot plate 

after full 

slide and 

tray 

drop. 

All 

        

When: 3/3           Where: Hitchcock           Why: PT3  

Test 

No. 

No. of 

Runs 

Reason for 

test 

Action / changes made prior Observations Changes to 

be made 

Good 

Results? 

Members 

Present 

1 1 Test Patty 

flip for PT3 

Coded program to run PT3 Made it up ramp perfectly, Turned right but did not 

move forward, just turned straight again and then 

"flipped" the patty. 

Actually 

drive up to 

the patty flip 

Good 

going up 

ramp 

(code 

Kevin, 

Alek 



E8 

 

taken 

from 

PT2) 

2 1 - Found error in code: 

driveForward(***); Solution: 

changed to: driveForwardFor(***)). 

Made it to the patty flipper, arm bumped into the 

plate, arm slipped from under the plate when trying 

to flip. Robot slid (rotated left) 

Lower arm 

slightly, add 

hook to arm 

so robot does 

not slide 

Made it 

to patty 

flip 

Kevin, 

Alek, 

Thomas 

3 1 - Added small cardboard hook to the 

end of the robot, lowered front arm 

starting angle by 5 degree ( to 25 

degrees) 

arm started high, made a mistake changing arm 

angle 

correct arm 

angle 

 Kevin, 

Alek, 

Thomas 

4 1 - Changed starting angle to 125 

degrees (from 5 degrees) 

Right wheel got loose. Driving went haywire as a 

result 

Secure 

wheels 

 Kevin, 

Alek, 

Thomas 

5 3 - Superglued DuBro wheels to the 

IGWAN/Wheel Adapters 

Run1: unplugged wire to servo; Run2: Misses Hot 

plate; Run3: Basically run 2, but further info, turns 

left too much when turning to face patty flip. Front 

arm barely misses to the left of the plate. Also, 

Going up ramp, robot rotates slightly to the left 

Decrease left 

turn when 

facing patty 

flip 

 Kevin, 

Alek, 

Thomas 

6 4 - Changed left turn from 90 degrees to 

85 degrees 

Run 1: Patty successfully flipped, plate was not 

returned to original position, very smooth 

performance. Run 2: Patty successfully flipped and 

plate returned to original position. Run 3: same 

result as run 2. Run 4: moved the plate but did not 

flip the patty. Seems that the closer the arm is to 

the rotating point of the hot plate, the higher the 

chance that the robot manages to get full points. 

Slightly 

increase the 

distance 

driven to the 

right wall 

before going 

to the patty 

flip, which 

may make 

the flip more 

consistent 

and efficient. 

Successf

ully 

flipped 

patty and 

returned 

hot plate 

Kevin, 

Alek, 

Thomas 

7 2 Test Patty 

Flip and ice 

cream lever 

and PT3 

Increased distance driven right 

before going up to patty from 9in to 

9.2in. Added new code to flip ice 

cream lever 

Run1: front arm missed hot plate from opposite 

side, slides out from under on the right side now, 

instead of the left. Run2: same thing 

Slightly 

decrease 

right 

movement, 

slightly 

decrease turn 

after patty 

flip 

 Kevin, 

Alek, 

Thomas 

8 1 - Changed distance moving right 

before patty flip from 9.2in to 9.1in. 

Decreased left turn (after patty flip) 

from 87 degree to 70 degrees 

Front arm for patty got loose. Did not flip patty Secure front 

patty arm, 

decrease left 

turn after 

patty going 

to the ice 

ream levers 

 Kevin, 

Alek, 

Thomas 

9 2 - Front patty arm hot glued to front 

axle, old glue taken off. 

Run 1: Patty was not flipped, But ice cream lever 

succesfully flipped. Run 2: Neither action 

successful, arm slides in to wheel for patty, arm 

missed left lever, ended up right of it. 

Change turn 

degrees, 

tweak 

Ice 

cream 

lever 

flipped. 

Kevin, 

Alek, 

Thomas 



E9 

 

10 2 - end angle for robot front patty arm 

changed from 55 degrees to 38 

degrees (to bottom). Added a 3 

degree turn left once robot reaches 

patty flip. Changed starting angle of 

front arm from 135 degrees to 133 

degrees (was hitting cow catcher). 

Run 1: Patty was not flipped. Ice cream not 

flipped. Arm missed to left of patty flipper, did not 

go all the way up. Ended up in between left and 

center ice cream levers. Whenever patty not 

flipped correctly, arm orientation is changed 

(forced downward a little). Run 2: Same thing 

happened. 

Tweak  Kevin, 

Alek 

11 2 - Remove the left turn 3 degrees at 

patty flip. Change distance moving 

right before patty flip from 9.1in to 

9.0in. Incease distance moving to 

icecream from 15in to 17in. 

Run 1: ended up outside the patty flip. Ran into 

middle ice cream lever. aka went too far. Run 2: 

ended up inside patty flip. Starting arm position 

got changed. 

decrease 

distance 

traveled to 

ice cream 

lever. tweak 

patty flip. 

 Kevin, 

Alek 

12 2 - Drive power moving right changed 

from 50 to 25. Decreased distance 

traveled to ice cream lever from 17in 

to 16in. 

Run 1: Arm ended way outside of patty flip. Ran 

into ice cream lever, was left of left lever but close. 

Run 2: same and consistent 

Increase 

right turn 

after going 

up ramp 

 Kevin, 

Alek 

13 2 - Increase right turn after going up 

ramp from 90 degrees to 100 degrees 

Run 1: Front arm makes contact with the patty flip, 

servo is now weaker?? Cannot even lift plate 

anymore. Misses ice cream lever. Run 2: same 

thing 

Figure out 

problem with 

front arm 

servo. 

 Kevin, 

Alek 

        

When: 3/4            Where: Hitchcock           Why: PT3  

Test 

No. 

No. of 

Runs 

Reason for 

test 

Action / changes made prior Observations Changes to 

be made 

Good 

Results? 

Members 

Present 

1 1 Code for 

PT3 

Resecured front axle to servo motor. 

Rescrewed motor block (it had 

gotten loose). 

Robot went wonky. IGWAN Motor block screwed 

on incorrectly. 

Rescrewed 

motor block 

(of IGWAN 

motor) 

 Kevin, 

Alek, 

Thomas, 

Keith 

2 2 - Correctly rescrewed motor block. 

Removed stylus from back arm due 

to complaints 

Run 1: too far in on the patty flip, flipped left ice 

cream lever. Run 2: same, consistent. 

change 

distance 

Flipped 

left 

Icecream 

lever 

Kevin, 

Alek, 

Thomas, 

Keith 

3 1 - Distance moving right before patty 

flip changed from 9.0in to 8.5in 

Hot plate was starting to flip. Patty was not fully 

flipped. ice cream lever kinda flipped? in between 

left and center levers 

Increase 

distance 

moved right 

 Kevin, 

Alek, 

Thomas, 

Keith 

4 3 - Distance moving right before patty 

flip changed from 8.5in to 8.75in 

Run 1: Too far outside patty flip. Center ice cream 

lever was flipped, kinda sorta ran into it. Run 2: 

same thing. Run 3: Too close inside patty flip. 

Add some 

sleeps to 

check 

problems 

 Kevin, 

Alek, 

Thomas, 

Keith 

5 3 - Added 1.5s sleep after getting to hot 

plate before turning arm. Added 1.0 

s sleep after lifting arm and turning 

for patty flip. 

Run 1: Ended up too far inside patty flip, flipped 

middle ice cream lever. Run 2: Ended up too far 

OUTSIDE patty flip, flipped left lever. 

Figure out 

why we are 

so 

inconsistent 

 Kevin, 

Alek, 

Thomas, 

Keith 

6 2 - Slowed down movement speed to 

increase consistency. 

Run 1: Ended up inside patty flip. Flipped left ice 

cream lever. Run 2: same but got near hot plate 

and got stuck??? 

-  Kevin, 

Alek, 

Thomas, 



E10 

 

Keith 

7 3 - Tweaks (turning and moving) Run 1: Ended up too far outside patty flip. Ran into 

ice cream levers, in between left and center. Run 2: 

Close to outside patty flip, successfully flipped 

patty and returned hot plate to original position. 

Run 3: Closer to center, patty flipped successfully, 

hot plate stayed up. Ran into ice cream levers 

again. 

Slightly 

decrease left 

turn before 

reaching 

patty flip. 

 Kevin, 

Alek, 

Thomas, 

Keith 

8 2 - Changed left turn before hot plate 

from 93 degrees to 91 degrees. 

Run 1: Too close to patty flip, did not flip. Ran 

into ice cream levers. Run 2: same. 

Charge 

proteus to 

decrease 

variations in 

runs. 

 Kevin, 

Alek, 

Keith 

9 4 - Created a template Run 1: encoder unplugged. Run 2: Ran too close to 

left wall when going up ramp. was too far outside 

hot plate. Ran into center lever. Run 3: close 

outside hotplate. But performed without flaw, ran 

into middle and right ice cream levers. OFFICIAL: 

Close, flipped patty but hot plate stayed up. ran 

into levers but did not pull them down. 

Charge 

proteus, 

tweak 

numbers and 

add code to 

flip patty 

down. 

 Kevin, 

Alek, 

Keith, 

Thomas 

10 2 - Distance run to ice cream lever 

changed from 16in to 15in and front 

arm for ice cream going down 

farther (85 degrees to 80 degrees). 

Added code to lower hot plate 

manually just in case. 

Run 1: bumped into right wall going up ramp, 

killed run. Run 2: perfect patty flip. ran into 

machine on way to ice cream flip. 

Charge 

proteus. 

Tweak code 

going to ice 

cream lever. 

 Kevin, 

Alek, 

Keith, 

Thomas 

11 3 - Backing up 1.5in (instead of 1in) 

after patty flip. Increasing turn after 

patty flip by 10 degrees. 

Run 1: Going up ramp, ended up turning slightly 

left, ruined run (too far outside patty flip). Run 2: 

Going up ramp, ended up turning slightly right, 

ruined run (too far inside patty flip). Run 3: Going 

up ramp, good. patty flipped, (front arm caught on 

hot plate coming down). Ruined front arm axle to 

motor connection. 

Fix front arm 

connection 

again. 

 Kevin, 

Alek, 

Keith, 

Thomas 

 


